Physics Midterm Exam - 2004

Part A

DIRECTIONS (1-20): Complete all questions in this part. Determine the answer that best completes each statement or question. Please show all work where possible.

- How far will a brick starting from rest fall freely in 3.0 seconds?
 - (1) 15 m
- (3) 44 m (4) 88 m
- (2) 29 m
- 45 = v; Ot + 1 a(ot) 2

- A car initially traveling at a speed of 16 meters per second accelerates uniformly to a speed of 20. meters per second over a distance of 36 meters. What is the magnitude of the car's acceleration?
 - (1) 0.11 m/s^2 (2) 2.0 m/s²
- (3) $0.22 \text{ m/s}^{\frac{5}{2}}$
- (4) 9.0 m/s^2

Vf 2 = V, 2 4 2acs

- A 1.5-kilogram lab cart is accelerated uniformly from rest to a speed of 2.0 meters per second in 0.50 second. What is the magnitude of the force producing this acceleration?
 - (1) 0.70 N
- (3) 3.0 N
- (2) 1.5 N
- (4) 6.0 N

Fat = may

4. Which graph best represents the motion of an object that is not in equilibrium as it travels along a straight line?

An object weighs 100. newtons on Earth's surface. When it is moved to a point one Earth radius above Earth's surface, it will weigh

(1) 25.0 N (2) 50.0 N

(3) 100. N

(4) 400. N

6m, m2 2r ⇒ 4 F

- A ball is thrown at an angle of 38° to the horizontal. What happens to the magnitude of the ball's vertical acceleration during the total time interval that the ball is in the air?
 - (1) It decreases, then increases.
 - (2) It decreases, then remains the same.
 - (3) It increases, then decreases.
 - (4) It remains the same.

7. Which pair of forces acting concurrently on an object will produce the resultant of greatest magnitude?

A 3.0-kilogram block is initially at rest on a frictionless, horizontal surface. The block is moved 8.0 meters in 2.0 seconds by the application of a 12-newton horizontal force, as shown in the diagram below.

- What is the average power developed while moving the block?
- (1) 24 W
- (2) 32 W

- (3) 48 W
 - (4) 96 W

- P FV
- Which graph best represents the relationship between the kinetic energy, KE, and the velocity of an object accelerating in a straight line?

The diagram below shows a block sliding down a 10. plane inclined at angle θ with the horizontal.

As angle θ is increased, the coefficient of kinetic friction between the bottom surface of the block and the surface of the incline will

- (1) decrease
- (2) increase
- (3) remain the same

- 11: If the sum of all the forces acting on a moving object is zero, the object will
 - (1) slow down and stop
 - (2) change the direction of its motion
 - (3) accelerate uniformly
 - (4) continue moving with constant velocity

- A vector makes an angle, θ , with the horizontal. The horizontal and vertical components of the vector will be equal in magnitude if angle θ is
 - $(1) 30^{\circ}$
- $(3) 60^{\circ}$
- (2) 45°>
- (4) 90°

- 13. An object weighing 15 newtons is lifted from the ground to a height of 0.22 meter. The increase in the object's gravitational potential energy is approximately:
 - (1) 310

- (2) 32 J

- A 1,200-kilogram car traveling at 10. meters per second hits a tree and is brought to rest in 0.10 second. What is the magnitude of the average force acting on the car to bring it to rest?
 - (1) 1.2×10^{2} N
- (3) $1.2 \times 10^4 \text{ N}$
- (2) 1.2×10^5 N
- $(4) 1.2 \times 10^5 \text{ N}$

Mar - Fat

- A 10.-newton force is required to hold a stretched spring 0.20 meter from its rest position. What is the potential energy stored in the stretched spring?
 - (1) 1.0 I
- (3) 5.0
- (2) 2.0 J
- (4) 50. J

Friend = 10 N Faug = 5N (5N)(.20m) = W Fs: 10N -> k = 50N/m -> 1kx2

Base your answers to questions 16 and 17 on the information below.

A 2.0×10^3 -kilogram car travels at a constant speed of 12 meters per second around a circular curve of radius 30. meters.

- 16, As the car goes around the curve, the centripetal force is directed
 - (1) toward the center of the circular curve
 - (2) away from the center of the circular curve
 - (3) tangent to the curve in the direction of motion
 - (4) tangent to the curve opposite the direction of motion

- What is the magnitude of the centripetal acceleration of the car as it goes around the curve?
 - (1) 0.40 m/s² (2) 4.8 m/s²
- (3) 800 m/s^2
- V
- (4) 9,600 m/s²

- 18. What is the approximate width of a person's little finger?
 - (1) 1 m

(3) 0.01 m Ica

- (2) 0.1 m
- (4) 0.001 m

19. The graph below shows the relationship between the work done by a student and the time of ascent as the student runs up a flight of stairs.

The slope of the graph would have units of

- (1) joules
- (3) watts
- (2) seconds
- (4) newtons

A 1.2-kilogram block and a 1.8-kilogram block are initially at rest on a frictionless, horizontal surface. When a compressed spring between the blocks is released, the 1.8-kilogram block moves to the right at 2.0 meters per second, as shown.

What is the speed of the 1.2-kilogram block after the spring is released?

- (1) 1.4 m/s
- (3) 3.0 m/s
- (2) 2.0 m/s
- (4) 3.6 m/s

Directions ($\mathfrak{A}_i - \mathfrak{Z}_i$): Answer all problems and make sure to write out the equation, substitute with units, and write your answer with units. No Work = No Credit

H

Base your answers to questions # through #3 on the information below.

A force of 10. newtons toward the right is exerted on a wooden crate initially moving to the right on a horizontal wooden floor. The crate weighs 25 newtons.

Al. Calculate the magnitude of the force of friction between the crate and the floor. [Show all work, including the equation and substitution with units] [2]

* Ref. table
$$\mu_{k}(\omega \circ \delta \circ n \omega \circ \delta) = 0.3$$
 +1 Static Fric
 $F_{f} = \mu_{k}F_{N} = (0.3)(25N)$ +2 RJH Ans
$$F_{f} = 7.5N$$

$$\frac{1}{2}$$

22. On the diagram below, draw and label all vertical and horizontal forces acting on the crate. [1]

3. What is the magnitude of the net force acting on the crate? [1]

+1 A11 Roll

A hiker walks 5.00 kilometers due north and then 7.00 kilometers due east.

24. What is the magnitude of her resultant displacement? [1]

25. What total distance has she traveled? [1]

Base your answers to questions 2 to 2 1 on the following speed time graph which represents the linear motion of a cart.

26. Determine the magnitude of acceleration of the cart during interval AB. [1]

27. What is the average speed of the cart during interval CD. [1]

A 160.-newton box sits on a 10.-meter-long frictionless plane inclined at an angle of 30.° to the horizontal as shown. Force (F) applied to a rope attached to the box causes the box to move with a constant speed up the incline.

28. On the diagram below, construct a vector to represent the weight of the box. Use a metric ruler and scale of 1.0 centimeter = 40. newtons. Begin the vector at point B and label its magnitude in newtons. [2] 160, N=4, Oca

27. Calculate the amount of work done in moving the box from the bottom to the top of the incline plane. [Show all work, including the equation and substitution with units] [2]

Frictionless > | Fappi = |Fi Fn = (W) Sin 0 = (160. N) Sin(30.0) = 80. N W=Fas=(80.0)(10.m)=(8005 10. Th sin 30° = h h = 5.0 n W= E = PE = miglin = (160, N) (5.0m) = 800 J

An outfielder throws a baseball to the third baseman at a speed of 18.5 meters per second and at an angle of 60.° above the horizontal.

 \mathfrak{Z} . Find the initial horizontal velocity (v_x) and the initial vertical veolicy (v_y) of the baseball? [1]

$$V_x = \frac{9.25 \text{ m/s}}{V_1 \cos \Theta}$$

$$v_y = \frac{16.0 \, m/s}{V_i \, sin \theta}$$

31. If the ball is caught at the same height it is thrown, calculate the amount of time the ball is in the air. [2]

$$\frac{\times}{a = 0mGr} = -9.87 \% 2$$

$$V_1 = 9.25 \% V_2 = 16.0 \%$$

$$\Delta S = 0m$$

$$\Delta S = V, \Delta t + \frac{1}{2} a(st)^{2}$$

$$Om = (16.0\%) at + \frac{1}{2} (-9.8(\%)^{2})(at)^{2}$$

$$O = 16 - 4.905(at)$$

$$at = 3.3s$$

+1 Stpmh fid height half-way