CONSUMABLE WORKBOOKS Many of the worksheets contained in the Chapter Resource Masters booklets are available as consumable workbooks in both English and Spanish.

<table>
<thead>
<tr>
<th>MHID</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study Guide and Intervention Workbook</td>
<td>0-07-660292-3 978-0-07-660292-6</td>
</tr>
<tr>
<td>Homework Practice Workbook</td>
<td>0-07-660291-5 978-0-07-660291-9</td>
</tr>
<tr>
<td>Spanish Version</td>
<td></td>
</tr>
<tr>
<td>Homework Practice Workbook</td>
<td>0-07-660294-X 978-0-07-660294-0</td>
</tr>
</tbody>
</table>

Answers For Workbooks The answers for Chapter 8 of these workbooks can be found in the back of this Chapter Resource Masters booklet.

ConnectED All of the materials found in this booklet are included for viewing, printing, and editing at connected.mcgraw-hill.com.

Spanish Assessment Masters (MHID: 0-07-660289-3, ISBN: 978-0-07-660289-6) These masters contain a Spanish version of Chapter 8 Test Form 2A and Form 2C.

connected.mcgraw-hill.com
Contents

Teacher’s Guide to Using the Chapter 8 Resource Masters .. iv

Chapter Resources

- Chapter 8 Student-Built Glossary .. 1
- Chapter 8 Anticipation Guide (English) .. 3
- Chapter 8 Anticipation Guide (Spanish) .. 4

Lesson 8-1

Adding and Subtracting Polynomials
- Study Guide and Intervention .. 5
- Skills Practice .. 7
- Practice .. 8
- Word Problem Practice ... 9
- Enrichment ... 10
- Graphing Calculator Activity .. 11

Lesson 8-2

Multiplying a Polynomial by a Monomial
- Study Guide and Intervention .. 12
- Skills Practice .. 14
- Practice .. 15
- Word Problem Practice ... 16
- Enrichment ... 17

Lesson 8-3

Multiplying Polynomials
- Study Guide and Intervention .. 18
- Skills Practice .. 20
- Practice .. 21
- Word Problem Practice ... 22
- Enrichment ... 23
- Spreadsheet Activity .. 24

Lesson 8-4

Special Products
- Study Guide and Intervention .. 25
- Skills Practice .. 27
- Practice .. 28
- Word Problem Practice ... 29
- Enrichment ... 30

Lesson 8-5

Using the Distributive Property
- Study Guide and Intervention .. 31
- Skills Practice .. 33
- Practice .. 34
- Word Problem Practice ... 35
- Enrichment ... 36

Lesson 8-6

Solving \(x^2 + bx + c = 0 \)
- Study Guide and Intervention .. 37
- Skills Practice .. 39
- Practice .. 40
- Word Problem Practice ... 41
- Enrichment ... 42

Lesson 8-7

Solving \(ax^2 + bx + c = 0 \)
- Study Guide and Intervention .. 43
- Skills Practice .. 45
- Practice .. 46
- Word Problem Practice ... 47
- Enrichment ... 48
- Graphing Calculator Activity .. 49

Lesson 8-8

Differences of Squares
- Study Guide and Intervention .. 50
- Skills Practice .. 52
- Practice .. 53
- Word Problem Practice ... 54
- Enrichment ... 55
- Spreadsheet Activity .. 56

Lesson 8-9

Perfect Squares
- Study Guide and Intervention .. 57
- Skills Practice .. 59
- Practice .. 60
- Word Problem Practice ... 61
- Enrichment ... 62

Assessment

- Student Recording Sheet .. 63
- Rubric for Scoring Extended Response ... 64
- Chapter 8 Quizzes 1 and 2 ... 65
- Chapter 8 Quizzes 3 and 4 ... 66
- Chapter 8 Mid-Chapter Test ... 67
- Chapter 8 Vocabulary Test ... 68
- Chapter 8 Test, Form 1 ... 69
- Chapter 8 Test, Form 2A ... 71
- Chapter 8 Test, Form 2B ... 73
- Chapter 8 Test, Form 2C ... 75
- Chapter 8 Test, Form 2D ... 77
- Chapter 8 Test, Form 3 ... 79
- Chapter 8 Extended Response Test .. 81
- Standardized Test Practice ... 82

Answers

.. A1-A40
Teacher’s Guide to Using the
Chapter 8 Resource Masters

The Chapter 8 Resource Masters includes the core materials needed for Chapter 8. These materials include worksheets, extensions, and assessment options. The answers for these pages appear at the back of this booklet.

All of the materials found in this booklet are included for viewing, printing, and editing at connectED.mcgraw-hill.com.

Chapter Resources

Student-Built Glossary (pages 1–2) These masters are a student study tool that presents up to twenty of the key vocabulary terms from the chapter. Students are to record definitions and/or examples for each term. You may suggest that students highlight or star the terms with which they are not familiar. Give this to students before beginning Lesson 8-1. Encourage them to add these pages to their mathematics study notebooks. Remind them to complete the appropriate words as they study each lesson.

Anticipation Guide (pages 3–4) This master, presented in both English and Spanish, is a survey used before beginning the chapter to pinpoint what students may or may not know about the concepts in the chapter. Students will revisit this survey after they complete the chapter to see if their perceptions have changed.

Lesson Resources

Study Guide and Intervention These masters provide vocabulary, key concepts, additional worked-out examples and Check Your Progress exercises to use as a reteaching activity. It can also be used in conjunction with the Student Edition as an instructional tool for students who have been absent.

Skills Practice This master focuses more on the computational nature of the lesson. Use as an additional practice option or as homework for second-day teaching of the lesson.

Practice This master closely follows the types of problems found in the Exercises section of the Student Edition and includes word problems. Use as an additional practice option or as homework for second-day teaching of the lesson.

Word Problem Practice This master includes additional practice in solving word problems that apply the concepts of the lesson. Use as an additional practice or as homework for second-day teaching of the lesson.

Enrichment These activities may extend the concepts of the lesson, offer an historical or multicultural look at the concepts, or widen students’ perspectives on the mathematics they are learning. They are written for use with all levels of students.

Graphing Calculator, TI-Nspire or Spreadsheet Activities These activities present ways in which technology can be used with the concepts in some lessons of this chapter. Use as an alternative approach to some concepts or as an integral part of your lesson presentation.
Assessment Options

The assessment masters in the Chapter 8 Resource Masters offer a wide range of assessment tools for formative (monitoring) assessment and summative (final) assessment.

Student Recording Sheet This master corresponds with the standardized test practice at the end of the chapter.

Extended Response This master provides information for teachers and students on how to assess performance on open-ended questions.

Quizzes Four free-response quizzes offer assessment at appropriate intervals in the chapter.

Mid-Chapter Test This 1-page test provides an option to assess the first half of the chapter. It parallels the timing of the Mid-Chapter Quiz in the Student Edition and includes both multiple-choice and free-response questions.

Vocabulary Test This test is suitable for all students. It includes a list of vocabulary words and 9 questions to assess students’ knowledge of those words. This can also be used in conjunction with one of the leveled chapter tests.

Leveled Chapter Tests

• Form 1 contains multiple-choice questions and is intended for use with below grade level students.
• Forms 2A and 2B contain multiple-choice questions aimed at on grade level students. These tests are similar in format to offer comparable testing situations.
• Forms 2C and 2D contain free-response questions aimed at on grade level students. These tests are similar in format to offer comparable testing situations.
• Form 3 is a free-response test for use with above grade level students.

All of the above mentioned tests include a free-response Bonus question.

Extended-Response Test Performance assessment tasks are suitable for all students. Sample answers and a scoring rubric are included for evaluation.

Standardized Test Practice These three pages are cumulative in nature. It includes three parts: multiple-choice questions with bubble-in answer format, griddable questions with answer grids, and short-answer free-response questions.

Answers
• The answers for the Anticipation Guide and Lesson Resources are provided as reduced pages.
• Full-size answer keys are provided for the assessment masters.
This is an alphabetical list of the key vocabulary terms you will learn in Chapter 8. As you study the chapter, complete each term’s definition or description. Remember to add the page number where you found the term. Add these pages to your Algebra Study Notebook to review vocabulary at the end of the chapter.

<table>
<thead>
<tr>
<th>Vocabulary Term</th>
<th>Found on Page</th>
<th>Definition/Description/Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>difference of two squares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>factoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>factoring by grouping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOIL method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>perfect square trinomial</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on the next page)
<table>
<thead>
<tr>
<th>Vocabulary Term</th>
<th>Found on Page</th>
<th>Definition/Description/Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>prime polynomial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quadratic equation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quadratic expression</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero Product Property</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Anticipation Guide

Quadratic Expressions and Equations

Step 1
Before you begin Chapter 8

- Read each statement.
- Decide whether you Agree (A) or Disagree (D) with the statement.
- Write A or D in the first column OR if you are not sure whether you agree or disagree, write NS (Not Sure).

<table>
<thead>
<tr>
<th>STEP 1 A, D, or NS</th>
<th>Statement</th>
<th>STEP 2 A or D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>When multiplying two powers that have the same base, multiply the exponents.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>$(k^3)^4$ is equivalent to k^{12}.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>To divide two powers that have the same base, subtract the exponents.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>$(\frac{2}{5})^3$ is the same as $\frac{2^3}{5}$.</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>A polynomial may contain one or more monomials.</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>The degree of the polynomial $3x^2y^3 - 5y^2 + 8x^3$ is 3 because the greatest exponent is 3.</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>The greatest common factor (GCF) of two or more monomials is the product of their unique factors when each monomial is written in factored form.</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Any two numbers that have a greatest common factor of 1 are said to be relatively prime.</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>If the product of any two factors is 0, then at least one of the factors must equal 0.</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>A quadratic trinomial has a degree of 4.</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>To solve an equation such as $x^2 = 8 + 2x$, take the square root of both sides.</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>The polynomial $3r^2 - r - 2$ can not be factored because the coefficient of r^2 is not 1.</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>The polynomial $t^2 + 16$ is not factorable.</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>The numbers 16, 64, and 121 are perfect squares.</td>
<td></td>
</tr>
</tbody>
</table>

Step 2
After you complete Chapter 8

- Reread each statement and complete the last column by entering an A or a D.
- Did any of your opinions about the statements change from the first column?
- For those statements that you mark with a D, use a piece of paper to write an example of why you disagree.
8 Ejercicios preparatorios

Expresiones y Ecuaciones Cuadráticos

Paso 1 Antes de comenzar el Capítulo 8

- Lee cada enunciado.
- Decide si estás de acuerdo (A) o en desacuerdo (D) con el enunciado.
- Escribe A o D en la primera columna O si no estás seguro(a) de la respuesta, escribe NS (No estoy seguro(a)).

<table>
<thead>
<tr>
<th>Paso 1 A, D o NS</th>
<th>Enunciado</th>
<th>Paso 2 A o D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Al multiplicar dos potencias con la misma base, multiplica los exponentes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. ((k^3)^4) es equivalente a (k^{12}).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Para dividir dos potencias que tienen la misma base, resta los exponentes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. (\left(\frac{2}{5}\right)^3) es lo mismo que (\frac{2}{5}).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Un polinomio puede contener uno o más monomios.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. El grado del polinomio (3x^2y^3 - 5y^2 + 8x^3) es 3 porque el exponente más grande es 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. El máximo común divisor (MCD) de dos o más monomios es el producto de sus únicos factores cuando cada monomio se escribe en forma factorizada.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Se dice que dos números cualesquiera que tengan un máximo común divisor de 1 son relativamente primos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Si el producto de dos factores cualesquiera es 0, entonces por lo menos uno de los factores debe ser igual a 0.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Un trinomio cuadrático tiene un grado de 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Para resolver una ecuación como (x^2 = 8 + 2x), extrae la raíz cuadrada de ambos lados.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. El polinomio (3s^2 - s - 2) no se puede factorizar porque el coeficiente de (s^2) no es 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. El polinomio (t^2 + 16) no es factorizable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Los números 16, 64, y 121 son cuadrados perfectos.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paso 2 Después de completar el Capítulo 8

- Vuelve a leer cada enunciado y completa la última columna con una A o una D.
- ¿Cambió cualquiera de tus opiniones sobre los enunciados de la primera columnas?
- En una hoja de papel aparte, escribe un ejemplo de por qué estás en desacuerdo con los enunciados que marcaste con una D.
Polynomials in Standard Form A polynomial is a monomial or a sum of monomials. A binomial is the sum of two monomials, and a trinomial is the sum of three monomials. Polynomials with more than three terms have no special name. The degree of a monomial is the sum of the exponents of all its variables. The degree of the polynomial is the same as the degree of the monomial term with the highest degree.

The terms of a polynomial are usually arranged so that the terms are in order from greatest degree to least degree. This is called the **standard form of a polynomial**.

Example
Determine whether each expression is a polynomial. If so, identify the polynomial as a monomial, binomial, or trinomial. Then find the degree of the polynomial.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Polynomial?</th>
<th>Monomial, Binomial, or Trinomial?</th>
<th>Degree of the Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3x - 7xyz$</td>
<td>Yes. $3x - 7xyz = 3x + (-7xyz)$, which is the sum of two monomials</td>
<td>binomial</td>
<td>3</td>
</tr>
<tr>
<td>-25</td>
<td>Yes. -25 is a real number.</td>
<td>monomial</td>
<td>0</td>
</tr>
<tr>
<td>$7n^3 + 3n^{-4}$</td>
<td>No. $3n^{-4} = \frac{3}{n^4}$, which is not a monomial</td>
<td>none of these</td>
<td>—</td>
</tr>
<tr>
<td>$9x^3 + 4x + x + 4 + 2x$</td>
<td>Yes. The expression simplifies to $9x^3 + 7x + 4$, which is the sum of three monomials</td>
<td>trinomial</td>
<td>3</td>
</tr>
</tbody>
</table>

Exercises
Determine whether each expression is a polynomial. If it is a polynomial, find the degree and determine whether it is a monomial, binomial, or trinomial.

1. 36
2. $\frac{3}{q^2} + 5$
3. $7x - x + 5$
4. $8g^2h - 7gh + 2$
5. $\frac{1}{4y^2} + 5y - 8$
6. $6x + x^2$

Write each polynomial in standard form. Identify the leading coefficient.

7. $x^3 + x^5 - x^2$
8. $x^4 + 4x^3 - 7x^5 + 1$
9. $-3x^6 - x^5 + 2x^8$

10. $2x^7 - x^6$
11. $3x + 5x^4 - 2 - x^2$
12. $-2x^4 + x - 4x^5 + 3$
8-1 Study Guide and Intervention (continued)

Adding and Subtracting Polynomials

Add and Subtract Polynomials To add polynomials, you can group like terms horizontally or write them in column form, aligning like terms vertically. Like terms are monomial terms that are either identical or differ only in their coefficients, such as 3p and \(-5p\) or \(2x^2y\) and \(8x^2y\).

You can subtract a polynomial by adding its additive inverse. To find the additive inverse of a polynomial, replace each term with by adding its additive inverse. To find the additive inverse of a polynomial, replace each term with its additive inverse or opposite.

Example Find \((3x^2 + 2x - 6) - (2x + x^2 + 3)\).

Horizontal Method

Use additive inverses to rewrite as addition. Then group like terms.

\[
(3x^2 + 2x - 6) - (2x + x^2 + 3) = (3x^2 + 2x - 6) + \left[(-2x) + (-x^2) + (-3)\right]
= [3x^2 + (-x^2)] + [2x + (-2x)] + [-6 + (-3)]
= 2x^2 + (-9)
= 2x^2 - 9
\]

The difference is \(2x^2 - 9\).

Vertical Method

Align like terms in columns and subtract by adding the additive inverse.

\[
\begin{align*}
3x^2 & \quad + \quad 2x & \quad - \quad 6 \\
(-) & \quad x^2 & \quad + \quad 2x & \quad + \quad 3 \\
3x^2 & \quad + \quad 2x & \quad - \quad 6 \\
(+) & \quad -x^2 & \quad - \quad 2x & \quad - \quad 3 \\
2x^2 & \quad - \quad 9
\end{align*}
\]

The difference is \(2x^2 - 9\).

Exercises

Find each sum or difference.

1. \((4a - 5) + (3a + 6)\)
2. \((6x + 9) + (4x^2 - 7)\)

3. \((6xy + 2y + 6x) + (4xy - x)\)
4. \((x^2 + y^2) + (-x^2 + y^2)\)

5. \((3p^2 - 2p + 3) + (p^2 - 7p + 7)\)
6. \((2x^2 + 5xy + 4y^2) + (-xy - 6x^2 + 2y^2)\)

7. \((8p - 5r) - (-6p^2 + 6r - 3)\)
8. \((8x^2 - 4x - 3) - (-2x - x^2 + 5)\)

9. \((3x^2 - 2x) - (3x^2 + 5x - 1)\)
10. \((4x^2 + 6xy + 2y^2) - (-x^2 + 2xy - 5y^2)\)

11. \((2h - 6j - 2k) - (-7h - 5j - 4k)\)
12. \((9xy^2 + 5xy) - (-2xy - 8xy^2)\)
8-1 Skills Practice

Adding and Subtracting Polynomials

Find each sum or difference.

1. \((2x + 3y) + (4x + 9y)\)
2. \((6s + 5t) + (4t + 8s)\)
3. \((5a + 9b) - (2a + 4b)\)
4. \((11m - 7n) - (2m + 6n)\)
5. \((m^2 - m) + (2m + m^2)\)
6. \((x^2 - 3x) - (2x^2 + 5x)\)
7. \((d^2 - d + 5) - (2d + 5)\)
8. \((2h^2 - 5h) + (7h - 3h^2)\)
9. \((5f + g - 2) + (-2f + 3)\)
10. \((6k^2 + 2k + 9) + (4k^2 - 5k)\)

Determine whether each expression is a polynomial. If it is a polynomial, find the degree and determine whether it is a monomial, binomial, or trinomial.

11. \(5mt + t^2\)
12. \(4by + 2b - by\)
13. \(-32\)
14. \(\frac{3x}{7}\)
15. \(5x^2 - 3x^{-4}\)
16. \(2c^2 + 8c + 9 - 3\)

Write each polynomial in standard form. Identify the leading coefficient.

17. \(3x + 1 + 2x^2\)
18. \(5x - 6 + 3x^2\)
19. \(9x^2 + 2 + x^3 + x\)
20. \(-3 + 3x^3 - x^2 + 4x\)
21. \(x^2 + 3x^3 + 27 - x\)
22. \(25 - x^3 + x\)
23. \(x - 3x^2 + 4 + 5x^3\)
24. \(x^2 + 64 - x + 7x^3\)
8-1 Practice

Adding and Subtracting Polynomials

Find each sum or difference.

1. \((4y + 5) + (-7y - 1)\)

2. \((-x^2 + 3x) - (5x + 2x^2)\)

3. \((4k^2 + 8k + 2) - (2k + 3)\)

4. \((2m^2 + 6m) + (m^2 - 5m + 7)\)

5. \((5a^2 + 6a + 2) - (7a^2 - 7a + 5)\)

6. \((-4p^2 - p + 9) + (p^2 + 3p - 1)\)

7. \((x^3 - 3x + 1) - (x^3 + 7 - 12x)\)

8. \((6x^2 - x + 1) - (-4 + 2x^2 + 8x)\)

9. \((4y^2 + 2y - 8) - (7y^2 + 4 - y)\)

10. \((w^2 - 4w - 1) + (-5 + 5w^2 - 3w)\)

Determine whether each expression is a polynomial. If it is a polynomial, find the degree and determine whether it is a monomial, binomial, or trinomial.

11. \(7a^2b + 3b^2 - a^2b\)

12. \(\frac{1}{5}y^3 + y^2 - 9\)

13. \(6g^2h^3k\)

14. \(\frac{x + 3x^4 - 21x^2}{x^3}\)

Write each polynomial in standard form. Identify the leading coefficient.

15. \(8x^2 - 15 + 5x^5\)

16. \(10x - 7 + x^4 + 4x^3\)

17. \(13x^2 - 5 + 6x^3 - x\)

18. \(4x + 2x^5 - 6x^3 + 2\)

19. BUSINESS The polynomial \(s^3 - 70s^2 + 1500s - 10,800\) models the profit a company makes on selling an item at a price \(s\). A second item sold at the same price brings in a profit of \(s^3 - 30s^2 + 450s - 5000\). Write a polynomial that expresses the total profit from the sale of both items.

20. GEOMETRY The measures of two sides of a triangle are given. If \(P\) is the perimeter, and \(P = 10x + 5y\), find the measure of the third side.
8-1 Word Problem Practice

Adding and Subtracting Polynomials

1. PRIMES Mei is trying to list as many prime numbers as she can for a challenge problem for her math class. She finds that the polynomial expression \(n^2 - n + 41 \) can be used to generate some, but not all, prime numbers. What is the degree of Mei’s polynomial?

2. PHONE CALLS A long-distance telephone company charges a standard monthly service fee of $19.95 plus $0.05 per minute of long-distance use. Write a polynomial to express the monthly cost of the phone plan if \(x \) minutes of long-distance time are used per month. What is the degree of the polynomial?

3. FIREWORKS Two bottle rockets are launched straight up into the air. The height, in feet, of each rocket at \(t \) seconds after launch is given by the polynomial equations below. Write an equation to show how much higher Rocket A traveled.
 Rocket A: \(D_1 = -16t^2 + 122t \)
 Rocket B: \(D_2 = -16t^2 + 84t \)

4. ENVELOPES An office supply company produces yellow document envelopes. The envelopes come in a variety of sizes, but the length is always 4 centimeters more than double the width. Write a polynomial expression to give the perimeter of any of the envelopes.

5. INDUSTRY Two identical right cylindrical steel drums containing oil need to be covered with a fire-resistant sealant. In order to determine how much sealant to purchase, George must find the surface area of the two drums. The surface area including the top and bottom bases is given by the following formula.
 \[S = 2\pi rh + 2\pi r^2 \]
 a. Write a polynomial to represent the total surface area of the two drums.
 b. Find the total surface area if the height of each drum is 2 meters and the radius of each is 0.5 meter. Let \(\pi = 3.14 \).
 c. The fire resistant sealant must be applied while they are stacked vertically in groups of three. If \(h \) is the height of each drum and \(r \) is the radius, write a polynomial to represent the exposed surface area.
Circular Areas and Volumes

Area of Circle
\[A = \pi r^2 \]

Volume of Cylinder
\[V = \pi r^2 h \]

Volume of Cone
\[V = \frac{1}{3} \pi r^2 h \]

Write an algebraic expression for each shaded area. (Recall that the diameter of a circle is twice its radius.)

1. \[x \]
2. \[y \]
3. \[2x \quad 2x \quad 3x \quad x \]

Write an algebraic expression for the total volume of each figure.

4. \[5x \quad 2x \]
5. \[x + a \quad x + b \]

Each figure has a cylindrical hole with a radius of 2 inches and a height of 5 inches. Find each volume.

6. \[7x \]
7. \[4x \]
Graphing Calculator Activity

Second Degree Polynomial Functions

Many real world problems can be modeled using polynomial functions. The Table function can be used to evaluate a function for multiple values.

Example

An object is dropped from the top of a 179-foot cliff to the water below. The height of the object above the water can be modeled by \(h(t) = -16t^2 + 179 \) where \(t \) is time in seconds.

a. Determine the height of the object after 0.5 second, 1 second, 1.5 seconds, and 2 seconds.

Enter the function into \(Y_1 \). Use \(\text{2nd} \ [\text{TBLSET}] \) to set up the calculator to display values of \(t \) in 0.5 second intervals. Display the table and record the results.

Examine the table. When \(x = 0.5 \), \(y = 175 \). This means that \(h(0.5) = 175 \), or that after 0.5 second, the object is 175 feet above the water. Thus, \(h(1) = 163 \) feet, \(h(1.5) = 143 \) feet, and \(h(2) = 115 \) feet.

b. After how many seconds does the object hit the water? Round to the nearest hundredth.

Scroll through the table. Notice that the \(y \)-values change from positive to negative between \(x = 3 \) and \(x = 3.5 \). Examine this interval more closely by resetting the table using \(\text{TbllStart} = 3 \) and \(\Delta \text{Tbl} = 0.1 \). Look for the change in sign.

Further examine the interval from \(x = 3.3 \) to \(x = 3.4 \) using \(\text{TbllStart} = 3.3 \) and \(\Delta \text{Tbl} = 0.01 \).

The \(y \)-value closest to zero occurs when \(x = 3.34 \). Thus, the object hits the water after about 3.34 seconds.

Exercises

1. An object is dropped from the top of a building that is 412 feet high. The distance, in feet, above the ground at \(x \) seconds is given by \(P(x) = -16x^2 + 412 \).

a. After how many seconds will the object be 100 feet above the ground?

b. How many seconds will it take the object to reach the ground?

2. A bungee jumper free falls from the Royal Gorge suspension bridge over the Arkansas River, 1053 feet above the river. The height \(h \) of the bungee jumper above the river, in feet, after \(t \) seconds can be represented by \(h = -16t^2 + 1053 \). Two seconds after the first bungee jumper falls, another person jumps down with an initial velocity of 80 feet per second. The position of the second jumper can be represented by the equation \(h = -16(t - 2)^2 - 80(t - 2) + 1053 \).

a. If the bungee cords are designed to stretch just enough so that the jumpers touch the water before springing back up, which jumper will touch the water first? How long does it take each jumper to touch the water?

b. Does the second jumper catch up to the first jumper? If so, how far are they above the river at this point and how long does it take each jumper to reach this point?
8-2 Study Guide and Intervention

Multiplying a Polynomial by a Monomial

Polynomial Multiplied by Monomial The Distributive Property can be used to multiply a polynomial by a monomial. You can multiply horizontally or vertically. Sometimes multiplying results in like terms. The products can be simplified by combining like terms.

Example 1 Find \(-3x^2(4x^2 + 6x - 8)\).

Horizontal Method
\(-3x^2(4x^2 + 6x - 8) = -3x^2(4x^2) + (-3x^2)(6x) - (-3x^2)(8) = -12x^4 - 18x^3 + 24x^2\)

Vertical Method
\[
\begin{array}{ccc}
4x^2 + 6x - 8 & \times & -3x^2 \\
\hline
12x^4 & -18x^3 & +24x^2
\end{array}
\]

The product is \(-12x^4 - 18x^3 + 24x^2\).

Example 2 Simplify \(-2(4x^2 + 5x) - x(x^2 + 6x)\).

\[
-2(4x^2 + 5x) - x(x^2 + 6x) = -2(4x^2) + (-2)(5x) + (-x)(x^2) + (-x)(6x) = -8x^2 + (-10x) + (-x^3) + (-6x^2) = (-x^3) + [-8x^2 + (-6x^2)] + (-10x) = -x^3 - 14x^2 - 10x
\]

Exercises

Find each product.

1. \(x(5x + x^2)\)
2. \(x(4x^2 + 3x + 2)\)
3. \(-2xy(2y + 4x^2)\)

4. \(-2g(g^2 - 2g + 2)\)
5. \(3x(x^4 + x^3 + x^2)\)
6. \(-4x(2x^3 - 2x + 3)\)

7. \(-4ax(10 + 3x)\)
8. \(3y(-4x - 6x^3 - 2y)\)
9. \(2x^2y(3xy + 2y + 5x)\)

Simplify each expression.

10. \(x(3x - 4) - 5x\)
11. \(-x(2x^2 - 4x) - 6x^2\)

12. \(6a(2a - b) + 2a(-4a + 5b)\)
13. \(4r(2r^2 - 3r + 5) + 6r(4r^2 + 2r + 8)\)

14. \(4n(3n^2 + n - 4) - n(3 - n)\)
15. \(2b(b^2 + 4b + 8) - 3b(3b^2 + 9b - 18)\)

16. \(-2z(4z^2 - 3z + 1) - z(3z^2 + 2z - 1)\)
17. \(2(4x^2 - 2x) - 3(-6x^2 + 4) + 2x(x - 1)\)
8-2 Study Guide and Intervention (continued)

Multiplying a Polynomial by a Monomial

Solve Equations with Polynomial Expressions Many equations contain polynomials that must be added, subtracted, or multiplied before the equation can be solved.

Example Solve \(4(n - 2) + 5n = 6(3 - n) + 19\).

\[
\begin{align*}
4(n - 2) + 5n &= 6(3 - n) + 19 & \text{Original equation} \\
4n - 8 + 5n &= 18 - 6n + 19 & \text{Distributive Property} \\
9n - 8 &= 37 - 6n & \text{Combine like terms.} \\
15n - 8 &= 37 & \text{Add } 6n \text{ to both sides.} \\
15n &= 45 & \text{Add } 8 \text{ to both sides.} \\
\quad n &= 3 & \text{Divide each side by } 15.
\end{align*}
\]

The solution is 3.

Exercises

Solve each equation.

1. \(2(a - 3) = 3(-2a + 6)\)

2. \(3(x + 5) - 6 = 18\)

3. \(3x(x - 5) - 3x^2 = -30\)

4. \(6(x^2 + 2x) = 2(3x^2 + 12)\)

5. \(4(2p + 1) - 12p = 2(8p + 12)\)

6. \(2(6x + 4) + 2 = 4(x - 4)\)

7. \(-2(4y - 3) - 8y + 6 = 4(y - 2)\)

8. \(x(x + 2) - x(x - 6) = 10x - 12\)

9. \(3(x^2 - 2x) = 3x^2 + 5x - 11\)

10. \(2(4x + 3) + 2 = -4(x + 1)\)

11. \(3(2h - 6) - (2h + 1) = 9\)

12. \(3(y + 5) - (4y - 8) = -2y + 10\)

13. \(3(2a - 6) - (-3a - 1) = 4a - 2\)

14. \(5(2x^2 - 1) - (10x^2 - 6) = -(x + 2)\)

15. \(3(x + 2) + 2(x + 1) = -5(x - 3)\)

16. \(4(3p^2 + 2p) - 12p^2 = 2(8p + 6)\)
Find each product.

1. \(a(4a + 3)\)
2. \(-c(11c + 4)\)

3. \(x(2x - 5)\)
4. \(2y(y - 4)\)

5. \(-3n(n^2 + 2n)\)
6. \(4h(3h - 5)\)

7. \(3x(5x^2 - x + 4)\)
8. \(7c(5 - 2c^2 + c^3)\)

9. \(-4b(1 - 9b - 2b^2)\)
10. \(6y(-5 - y + 4y^2)\)

11. \(2m^2(2m^2 + 3m - 5)\)
12. \(-3n^2(-2n^2 + 3n + 4)\)

Simplify each expression.

13. \(w(3w + 2) + 5w\)
14. \(f(5f - 3) - 2f\)

15. \(-p(2p - 8) - 5p\)
16. \(y^2(-4y + 5) - 6y^2\)

17. \(2x(3x^2 + 4) - 3x^3\)
18. \(4a(5a^2 - 4) + 9a\)

19. \(4b(-5b - 3) - 2(b^2 - 7b - 4)\)
20. \(3m(3m + 6) - 3(m^2 + 4m + 1)\)

Solve each equation.

21. \(3(a + 2) + 5 = 2a + 4\)
22. \(2(4x + 2) - 8 = 4(x + 3)\)

23. \(5(y + 1) + 2 = 4(y + 2) - 6\)
24. \(4(b + 6) = 2(b + 5) + 2\)

25. \(6(m - 2) + 14 = 3(m + 2) - 10\)
26. \(3(c + 5) - 2 = 2(c + 6) + 2\)
8-2 Practice

Multiplying a Polynomial by a Monomial

Find each product.

1. \(2h(-7h^2 - 4h)\)
2. \(6pq(3p^2 + 4q)\)

3. \(5jk(3jk + 2k)\)
4. \(-3rt(-2t^2 + 3r)\)

5. \(-\frac{1}{4}m(8m^2 + m - 7)\)
6. \(-\frac{2}{3}n^2(-9n^2 + 3n + 6)\)

Simplify each expression.

7. \(-2\ell(3\ell - 4) + 7\ell\)
8. \(5w(-7w + 3) + 2w(-2w^2 + 19w + 2)\)

9. \(6t(2t - 3) - 5(2t^2 + 9t - 3)\)
10. \(-2(3m^3 + 5m + 6) + 3m(2m^2 + 3m + 1)\)

11. \(-3g(7g - 2) + 3(g^2 + 2g + 1) - 3g(-5g + 3)\)

Solve each equation.

12. \(5(2t - 1) + 3 = 3(3t + 2)\)
13. \(3(3u + 2) + 5 = 2(2u - 2)\)

14. \(4(8n + 3) - 5 = 2(6n + 8) + 1\)
15. \(8(3b + 1) = 4(b + 3) - 9\)

16. \(t(t + 4) - 1 = t(t + 2) + 2\)
17. \(u(u - 5) + 8u = u(u + 2) - 4\)

18. NUMBER THEORY Let \(x\) be an integer. What is the product of twice the integer added to three times the next consecutive integer?

19. INVESTMENTS Kent invested \$5000 in a retirement plan. He allocated \(x\) dollars of the money to a bond account that earns 4% interest per year and the rest to a traditional account that earns 5% interest per year.

a. Write an expression that represents the amount of money invested in the traditional account.

b. Write a polynomial model in simplest form for the total amount of money \(T\) Kent has invested after one year. (Hint: Each account has \(A + IA\) dollars, where \(A\) is the original amount in the account and \(I\) is its interest rate.)

c. If Kent put \$500 in the bond account, how much money does he have in his retirement plan after one year?
1. **NUMBER THEORY** The sum of the first \(n \) whole numbers is given by the expression \(\frac{1}{2}(n^2 + n) \). Expand the equation by multiplying, then find the sum of the first 12 whole numbers.

2. **COLLEGE** Troy's boss gave him $700 to start his college savings account. Troy's boss also gives him $40 each month to add to the account. Troy's mother gives him $50 each month, but has been doing so for 4 fewer months than Troy's boss. Write a simplified expression for the amount of money Troy has received from his boss and mother after \(m \) months.

3. **LANDMARKS** A circle of 50 flags surrounds the Washington Monument. Suppose a new sidewalk 12 feet wide is installed just around the outside of the circle of flags. The outside circumference of the sidewalk is 1.10 times the circumference of the circle of flags.

![Diagram of a circle and a sidewalk]

Write an equation that equates the outside circumference of the sidewalk to 1.10 times the circumference of the circle of flags. Solve the equation for the radius of the circle of flags. Recall that circumference of a circle is \(2\pi r \).

4. **MARKET** Sophia went to the farmers’ market to purchase some vegetables. She bought peppers and potatoes. The peppers were $0.39 each and the potatoes were $0.29 each. She spent $3.88 on vegetables, and bought 4 more potatoes than peppers. If \(x \) = the number of peppers, write and solve an equation to find out how many of each vegetable Sophia bought.

5. **GEOMETRY** Some monuments are constructed as rectangular pyramids. The volume of a pyramid can be found by multiplying the area of its base \(B \) by one third of its height. The area of the rectangular base of a monument in a local park is given by the polynomial equation \(B = x^2 - 4x - 12 \).

![Diagram of a rectangular pyramid]

a. Write a polynomial equation to represent \(V \), the volume of a rectangular pyramid if its height is 10 centimeters.

b. Find the volume of the pyramid if \(x = 12 \).
Figurate Numbers

The numbers below are called **pentagonal numbers**. They are the numbers of dots or disks that can be arranged as pentagons.

1. Find the product $\frac{1}{2}n(3n - 1)$.

2. Evaluate the product in Exercise 1 for values of n from 1 through 4.

3. What do you notice?

4. Find the next six pentagonal numbers.

5. Find the product $\frac{1}{2}n(n + 1)$.

6. Evaluate the product in Exercise 5 for values of n from 1 through 5. On another sheet of paper, make drawings to show why these numbers are called the triangular numbers.

7. Find the product $n(2n - 1)$.

8. Evaluate the product in Exercise 7 for values of n from 1 through 5. Draw these hexagonal numbers.

9. Find the first 5 square numbers. Also, write the general expression for any square number.

The numbers you have explored above are called the plane figurate numbers because they can be arranged to make geometric figures. You can also create solid figurate numbers.

10. If you pile 10 oranges into a pyramid with a triangle as a base, you get one of the tetrahedral numbers. How many layers are there in the pyramid? How many oranges are there in the bottom layers?

11. Evaluate the expression $\frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n$ for values of n from 1 through 5 to find the first five tetrahedral numbers.
8-3 Study Guide and Intervention

Multiplying Polynomials

Multiply Binomials To multiply two binomials, you can apply the Distributive Property twice. A useful way to keep track of terms in the product is to use the FOIL method as illustrated in Example 2.

Example 1 Find \((x + 3)(x - 4)\).

Horizontal Method

\((x + 3)(x - 4)\)

\[= x(x - 4) + 3(x - 4)\]

\[= x^2 - 4x + 3x - 12\]

\[= x^2 - x - 12\]

Vertical Method

\[\begin{array}{c}
 x \\
 + 3 \\
 \hline \\
 x \\
 - 4 \\
 \hline \\
 -4x - 12 \\
 \hline \\
 x^2 + 3x \\
 \hline \\
 x^2 - x - 12
\end{array}\]

The product is \(x^2 - x - 12\).

Example 2 Find \((x - 2)(x + 5)\) using the FOIL method.

\((x - 2)(x + 5)\)

\[= (x)(x) + (x)(5) + (-2)(x) + (-2)(5)\]

\[= x^2 + 5x - 2x - 10\]

\[= x^2 + 3x - 10\]

The product is \(x^2 + 3x - 10\).

Exercises

Find each product.

1. \((x + 2)(x + 3)\)
 2. \((x - 4)(x + 1)\)
 3. \((x - 6)(x - 2)\)

4. \((p - 4)(p + 2)\)
6. \((2x - 1)(x + 5)\)

7. \((3n - 4)(3n - 4)\)
8. \((8m - 2)(8m + 2)\)
9. \((k + 4)(5k - 1)\)

10. \((3x + 1)(4x + 3)\)
11. \((x - 8)(-3x + 1)\)
12. \((5t + 4)(2t - 6)\)

13. \((5m - 3n)(4m - 2n)\)
14. \((a - 3b)(2a - 5b)\)
15. \((8x - 5)(8x + 5)\)

16. \((2n - 4)(2n + 5)\)
17. \((4m - 3)(5m - 5)\)
18. \((7g - 4)(7g + 4)\)
Multiply Polynomials

The Distributive Property can be used to multiply any two polynomials.

Example

Find \((3x + 2)(2x^2 - 4x + 5)\).

\[
(3x + 2)(2x^2 - 4x + 5) \\
= 3x(2x^2 - 4x + 5) + 2(2x^2 - 4x + 5) \quad \text{Distributive Property} \\
= 6x^3 - 12x^2 + 15x + 4x^2 - 8x + 10 \quad \text{Distributive Property} \\
= 6x^3 - 8x^2 + 7x + 10 \quad \text{Combine like terms.}
\]

The product is \(6x^3 - 8x^2 + 7x + 10\).

Exercises

Find each product.

1. \((x + 2)(x^2 - 2x + 1)\)
2. \((x + 3)(2x^2 + x - 3)\)

3. \((2x - 1)(x^2 - x + 2)\)
4. \((p - 3)(p^2 - 4p + 2)\)

5. \((3k + 2)(k^2 + k - 4)\)
6. \((2t + 1)(10t^2 - 2t - 4)\)

7. \((3n - 4)(n^2 + 5n - 4)\)
8. \((8x - 2)(3x^2 + 2x - 1)\)

9. \((2a + 4)(2a^2 - 8a + 3)\)
10. \((3x - 4)(2x^2 + 3x + 3)\)

11. \((n^2 + 2n - 1)(n^2 + n + 2)\)
12. \((t^2 + 4t - 1)(2t^2 - t - 3)\)

13. \((y^2 - 5y + 3)(2y^2 + 7y - 4)\)
14. \((3b^2 - 2b + 1)(2b^2 - 3b - 4)\)
8-3 Skills Practice

Multiplying Polynomials

Find each product.

1. \((m + 4)(m + 1)\)

2. \((x + 2)(x + 2)\)

3. \((b + 3)(b + 4)\)

4. \((t + 4)(t - 3)\)

5. \((r + 1)(r - 2)\)

6. \((n - 5)(n + 1)\)

7. \((3c + 1)(c - 2)\)

8. \((2x - 6)(x + 3)\)

9. \((d - 1)(5d - 4)\)

10. \((2\ell + 5)(\ell - 4)\)

11. \((3n - 7)(n + 3)\)

12. \((q + 5)(5q - 1)\)

13. \((3b + 3)(3b - 2)\)

14. \((2m + 2)(3m - 3)\)

15. \((4c + 1)(2c + 1)\)

16. \((5a - 2)(2a - 3)\)

17. \((4h - 2)(4h - 1)\)

18. \((x - y)(2x - y)\)

19. \((w + 4)(w^2 + 3w - 6)\)

20. \((t + 1)(t^2 + 2t + 4)\)

21. \((k + 4)(k^2 + 3k - 6)\)

22. \((m + 3)(m^2 + 3m + 5)\)
8-3 Practice

Multiplying Polynomials

Find each product.

1. \((q + 6)(q + 5)\)
2. \((x + 7)(x + 4)\)

3. \((n - 4)(n - 6)\)
4. \((a + 5)(a - 6)\)

5. \((4b + 6)(b - 4)\)
6. \((2x - 9)(2x + 4)\)

7. \((6a - 3)(7a - 4)\)
8. \((2x - 2)(5x - 4)\)

9. \((3a - b)(2a - b)\)
10. \((4g + 3h)(2g + 3h)\)

11. \((m + 5)(m^2 + 4m - 8)\)
12. \((t + 3)(t^2 + 4t + 7)\)

13. \((2h + 3)(2h^2 + 3h + 4)\)
14. \((3d + 3)(2d^2 + 5d - 2)\)

15. \((3q + 2)(9q^2 - 12q + 4)\)
16. \((3r + 2)(9r^2 + 6r + 4)\)

17. \((3n^2 + 2n - 1)(2n^2 + n + 9)\)
18. \((2t^2 + t + 3)(4t^2 + 2t - 2)\)

19. \((2x^2 - 2x - 3)(2x^2 - 4x + 3)\)
20. \((3y^2 + 2y + 2)(3y^2 - 4y - 5)\)

GEOMETRY Write an expression to represent the area of each figure.

21.
 \[
 \begin{align*}
 \text{Area} &= \frac{1}{2} \times (2x - 2) \times (4x + 2) \\
 &= (2x - 2)(4x + 2)
 \end{align*}

22.
 \[
 \begin{align*}
 \text{Area} &= \frac{1}{2} \times (5x - 4) \times (3x + 2) \\
 &= (5x - 4)(3x + 2)
 \end{align*}

23. NUMBER THEORY Let \(x\) be an even integer. What is the product of the next two consecutive even integers?

24. GEOMETRY The volume of a rectangular pyramid is one third the product of the area of its base and its height. Find an expression for the volume of a rectangular pyramid whose base has an area of \(3x^2 + 12x + 9\) square feet and whose height is \(x + 3\) feet.
1. **THEATER** The Loft Theater has a center seating section with $3c + 8$ rows and $4c - 1$ seats in each row. Write an expression for the total number of seats in the center section.

2. **CRAFTS** Suppose a quilt made up of squares has a length-to-width ratio of 5 to 4. The length of the quilt is $5x$ inches. The quilt can be made slightly larger by adding a border of 1-inch squares all the way around the perimeter of the quilt. Write a polynomial expression for the area of the larger quilt.

3. **SERVICE** A folded United States flag is sometimes presented to individuals in recognition of outstanding service to the country. The flag is presented folded in a triangle. Often the recipient purchases a case designed to display the folded flag to protect it from wear. One such display case has dimensions (in inches) shown below. Write a polynomial expression that represents the area of wall space covered by the display case.

4. **MATH FUN** Think of a whole number. Subtract 2. Write down this number. Take the original number and add 2. Write down this number. Find the product of the numbers you wrote down. Subtract the square of the original number. The result is always -4. Use polynomials to show how this number trick works.

5. **ART** The museum where Julia works plans to have a large wall mural replica of Vincent van Gogh’s *The Starry Night* painted in its lobby. First, Julia wants to paint a large frame around where the mural will be. The mural’s length will be 5 feet longer than its width, and the frame will be 2 feet wide on all sides. Julia has only enough paint to cover 100 square feet of wall surface. How large can the mural be?

 a. Write an expression for the area of the mural.

 b. Write an expression for the area of the frame.

 c. Write and solve an equation to find how large the mural can be.
Pascal’s Triangle

This arrangement of numbers is called Pascal’s Triangle. It was first published in 1665, but was known hundreds of years earlier.

1. Each number in the triangle is found by adding two numbers. What two numbers were added to get the 6 in the 5th row?

2. Describe how to create the 6th row of Pascal’s Triangle.

3. Write the numbers for rows 6 through 10 of the triangle.
 - Row 6:
 - Row 7:
 - Row 8:
 - Row 9:
 - Row 10:

Multiply to find the expanded form of each product.

4. \((a + b)^2\)

5. \((a + b)^3\)

6. \((a + b)^4\)

Now compare the coefficients of the three products in Exercises 4–6 with Pascal’s Triangle.

7. Describe the relationship between the expanded form of \((a + b)^n\) and Pascal’s Triangle.

8. Use Pascal’s Triangle to write the expanded form of \((a + b)^6\).
8-3 Spreadsheet Activity

Multiplying Polynomials

Example

A box is made by cutting a square with sides \(x \) inches long from each corner of a piece of cardboard and folding up the sides. If the piece of cardboard is 15 inches long and 12 inches wide, what integer value of \(x \) allows you to make the box with the greatest volume? What is the volume?

Step 1 The finished box will be \(x \) inches high, \(12 - 2x \) inches wide, and \(15 - 2x \) inches long. The volume of the box is \(x(12 - 2x)(15 - 2x) \) cubic inches.

Step 2 Use Column A of the spreadsheet for the value of \(x \). Enter the formulas for the width, length, and volume in Columns B, C, and D.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>13</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
<td>11</td>
<td>176</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>162</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>

Notice that \(x \) cannot be greater than 5 because \(12 - 2x \) must be positive. In this case, the box with the greatest volume is 176 cubic inches when \(x = 2 \).

Exercises

Use the spreadsheet to find the value of \(x \) that allows the box with the greatest volume for each piece of cardboard. State the volume of the box.

1. 16 inches long and 10 inches wide
2. 24 inches long and 18 inches wide

3. 28 inches long and 16 inches wide
4. 36 inches long and 24 inches wide

5. 48 inches long and 48 inches wide
6. 108 inches long and 44 inches wide

7. Study the spreadsheet you created for Exercise 5. Suppose \(y \) is the volume of the box with a height of \(x \) inches. If you were to graph the ordered pairs \((x, y)\) and connect them with a smooth curve, what would you expect the graph to look like? Use the graphing tool in the spreadsheet to verify your conjecture.
Special Products

Squares of Sums and Differences

Some pairs of binomials have products that follow specific patterns. One such pattern is called the square of a sum. Another is called the square of a difference.

<table>
<thead>
<tr>
<th>Square of a Sum</th>
<th>$(a + b)^2 = (a + b)(a + b) = a^2 + 2ab + b^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Square of a Difference</td>
<td>$(a - b)^2 = (a - b)(a - b) = a^2 - 2ab + b^2$</td>
</tr>
</tbody>
</table>

Example 1

Find $(3a + 4)(3a + 4)$.

Use the square of a sum pattern, with $a = 3a$ and $b = 4$.

$$(3a + 4)(3a + 4) = (3a)^2 + 2(3a)(4) + (4)^2$$

$= 9a^2 + 24a + 16$

The product is $9a^2 + 24a + 16$.

Example 2

Find $(2z - 9)(2z - 9)$.

Use the square of a difference pattern with $a = 2z$ and $b = 9$.

$$(2z - 9)(2z - 9) = (2z)^2 - 2(2z)(9) + (9)(9)$$

$= 4z^2 - 36z + 81$

The product is $4z^2 - 36z + 81$.

Exercises

Find each product.

1. $(x - 6)^2$
2. $(3p + 4)^2$
3. $(4x - 5)^2$
4. $(2x - 1)^2$
5. $(2h + 3)^2$
6. $(m + 5)^2$
7. $(a + 3)^2$
8. $(3 - p)^2$
9. $(x - 5y)^2$
10. $(8y + 4)^2$
11. $(8 + x)^2$
12. $(3a - 2b)^2$
13. $(2x - 8)^2$
14. $(x^2 + 1)^2$
15. $(m^2 - 2)^2$
16. $(x^3 - 1)^2$
17. $(2h^2 - k^2)^2$
18. $\left(\frac{1}{4}x + 3\right)^2$
19. $(x - 4y^2)^2$
20. $(2p + 4r)^2$
21. $\left(\frac{2}{3}x - 2\right)^2$
8-4 Study Guide and Intervention (continued)

Special Products

Product of a Sum and a Difference There is also a pattern for the product of a sum and a difference of the same two terms, \((a + b)(a - b)\). The product is called the difference of squares.

| Product of a Sum and a Difference | \((a + b)(a - b) = a^2 - b^2\) |

Example Find \((5x + 3y)(5x - 3y)\).

\[
(a + b)(a - b) = a^2 - b^2
\]

\[
(5x + 3y)(5x - 3y) = (5x)^2 - (3y)^2
\]

\[
= 25x^2 - 9y^2
\]

The product is \(25x^2 - 9y^2\).

Exercises

Find each product.

1. \((x - 4)(x + 4)\)
2. \((p + 2)(p - 2)\)
3. \((4x - 5)(4x + 5)\)
4. \((2x - 1)(2x + 1)\)
5. \((h + 7)(h - 7)\)
6. \((m - 5)(m + 5)\)
7. \((2d - 3)(2d + 3)\)
8. \((3 - 5q)(3 + 5q)\)
9. \((x - y)(x + y)\)
10. \((y - 4x)(y + 4x)\)
11. \((8 + 4x)(8 - 4x)\)
12. \((3a - 2b)(3a + 2b)\)
13. \((3y - 8)(3y + 8)\)
14. \((x^2 - 1)(x^2 + 1)\)
15. \((m^2 - 5)(m^2 + 5)\)
16. \((x^3 - 2)(x^3 + 2)\)
17. \((h^2 - k^2)(h^2 + k^2)\)
18. \(\left(\frac{1}{4}x + 2\right)\left(\frac{1}{4}x - 2\right)\)
19. \((3x - 2y^2)(3x + 2y^2)\)
20. \((2p - 5r)(2p + 5r)\)
21. \(\left(\frac{4}{3}x - 2y\right)\left(\frac{4}{3}x + 2y\right)\)
Find each product.

1. \((n + 3)^2\)
2. \((x + 4)(x + 4)\)
31. \((y - 7)^2\)
32. \((t - 3)(t - 3)\)
5. \((b + 1)(b - 1)\)
6. \((a - 5)(a + 5)\)
7. \((p - 4)^2\)
8. \((z + 3)(z - 3)\)
9. \((\ell + 2)(\ell + 2)\)
10. \((r - 1)(r - 1)\)
11. \((3g + 2)(3g - 2)\)
12. \((2m - 3)(2m + 3)\)
13. \((6 + u)^2\)
14. \((r + t)^2\)
15. \((3q + 1)(3q - 1)\)
16. \((c - d)^2\)
17. \((2k - 2)^2\)
18. \((w + 3h)^2\)
19. \((3p - 4)(3p + 4)\)
20. \((t + 2u)^2\)
21. \((x - 4y)^2\)
22. \((3b + 7)(3b - 7)\)
23. \((3y - 3g)(3y + 3g)\)
24. \((n^2 + r^2)^2\)
25. \((2k + m^2)^2\)
26. \((3t^2 - n)^2\)

27. GEOMETRY The length of a rectangle is the sum of two whole numbers. The width of the rectangle is the difference of the same two whole numbers. Using these facts, write a verbal expression for the area of the rectangle.
Find each product.

1. \((n + 9)^2\)

2. \((q + 8)^2\)

3. \((x - 10)^2\)

4. \((r - 11)^2\)

5. \((p + 7)^2\)

6. \((b + 6)(b - 6)\)

7. \((z + 13)(z - 13)\)

8. \((4j + 2)^2\)

9. \((5w - 4)^2\)

10. \((6h - 1)^2\)

11. \((3m + 4)^2\)

12. \((7v - 2)^2\)

13. \((7k + 3)(7k - 3)\)

14. \((4d - 7)(4d + 7)\)

15. \((3g + 9h)(3g - 9h)\)

16. \((4q + 5t)(4q - 5t)\)

17. \((a + 6u)^2\)

18. \((5r + p)^2\)

19. \((6h - m)^2\)

20. \((k - 6y)^2\)

21. \((u - 7p)^2\)

22. \((4b - 7v)^2\)

23. \((6n + 4p)^2\)

24. \((5q + 6t)^2\)

25. \((6a - 7b)(6a + 7b)\)

26. \((8h + 3d)(8h - 3d)\)

27. \((9x + 2y^2)^2\)

28. \((3p^3 + 2m)^2\)

29. \((5a^2 - 2b)^2\)

30. \((4m^3 - 2t)^2\)

31. \((6b^3 - g)^2\)

32. \((2b^2 - g)(2b^2 + g)\)

33. \((2v^2 + 3x^2)(2v^2 + 3x^2)\)

34. **GEOMETRY** Janelle wants to enlarge a square graph that she has made so that a side of the new graph will be 1 inch more than twice the original side \(g\). What trinomial represents the area of the enlarged graph?

35. **GENETICS** In a guinea pig, pure black hair coloring \(B\) is dominant over pure white coloring \(b\). Suppose two hybrid \(Bb\) guinea pigs, with black hair coloring, are bred.

 a. Find an expression for the genetic make-up of the guinea pig offspring.

 b. What is the probability that two hybrid guinea pigs with black hair coloring will produce a guinea pig with white hair coloring?
1. **PROBABILITY** The spinner below is divided into 2 equal sections. If you spin the spinner 2 times in a row, the possible outcomes are shown in the table below.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>red</td>
<td>blue</td>
</tr>
<tr>
<td>red</td>
<td>red</td>
<td>red</td>
</tr>
<tr>
<td>red</td>
<td>blue</td>
<td>blue</td>
</tr>
<tr>
<td>blue</td>
<td>blue</td>
<td>blue</td>
</tr>
</tbody>
</table>

What is the probability of spinning a blue and a red in two spins?

2. **GRAVITY** The height of a penny t seconds after being dropped down a well is given by the product of $(10 - 4t)$ and $(10 + 4t)$. Find the product and simplify. What type of special product does this represent?

3. **TRAFFIC PLANNING** The Lincoln Memorial in Washington, D.C., is surrounded by a circular drive called Lincoln Circle. Suppose the National Park Service wants to change the layout of Lincoln Circle so that there are two concentric circular roads. Write a polynomial equation for the area A of the space between the roads if the radius of the inside road is 10 meters less than the radius of the outside road.

4. **BUSINESS** The Combo Lock Company finds that its profit data from 2005 to the present can be modeled by the function $y = 4n^2 + 44n + 121$, where y is the profit n years since 2005. Which special product does this polynomial demonstrate? Explain.

5. **STORAGE** A cylindrical tank is placed along a wall. A cylindrical PVC pipe will be hidden in the corner behind the tank. See the side view diagram below. The radius of the tank is r inches and the radius of the PVC pipe is s inches.

 ![Diagram](image)

 a. Use the Pythagorean Theorem to write an equation for the relationship between the two radii. Simplify your equation so that there is a zero on one side of the equals sign.

 b. Write a polynomial equation you could solve to find the radius s of the PVC pipe if the radius of the tank is 20 inches.
Sums and Differences of Cubes

Recall the formulas for finding some special products:

Perfect-square trinomials:
\[(a + b)^2 = a^2 + 2ab + b^2\]
\[(a - b)^2 = a^2 - 2ab + b^2\]

Difference of two squares:
\[(a + b)(a - b) = a^2 - b^2\]

A pattern also exists for finding the cube of a sum \((a + b)^3\).

1. Find the product of \((a + b)(a + b)(a + b)\).

2. Use the pattern from Exercise 1 to evaluate \((x + 2)^3\).

3. Based on your answer to Exercise 1, predict the pattern for the cube of a difference \((a - b)^3\).

4. Find the product of \((a - b)(a - b)(a - b)\) and compare it to your answer for Exercise 3.

5. Use the pattern from Exercise 4 to evaluate \((x - 4)^3\).

Find each product.

6. \((x + 6)^3\)
7. \((x - 10)^3\)

8. \((3x - y)^3\)
9. \((2x - y)^3\)

10. \((4x + 3y)^3\)
11. \((5x + 2)^3\)
8-5 Study Guide and Intervention

Using the Distributive Property

Use the Distributive Property to Factor The Distributive Property has been used to multiply a polynomial by a monomial. It can also be used to express a polynomial in factored form. Compare the two columns in the table below.

<table>
<thead>
<tr>
<th>Multiplying</th>
<th>Factoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3(a + b) = 3a + 3b)</td>
<td>(3a + 3b = 3(a + b))</td>
</tr>
<tr>
<td>(x(y - z) = xy - xz)</td>
<td>(xy - xz = x(y - z))</td>
</tr>
<tr>
<td>(6y(2x + 1) = 6y(2x) + 6y(1))</td>
<td>(12xy + 6y = 6y(2x) + 6y(1))</td>
</tr>
<tr>
<td></td>
<td>(= 12xy + 6y)</td>
</tr>
<tr>
<td></td>
<td>(= 6y(2x + 1))</td>
</tr>
</tbody>
</table>

Example 1 Use the Distributive Property to factor \(12mp + 80m^2\).

Find the GCF of \(12mp\) and \(80m^2\).

\(12mp = 2 \cdot 2 \cdot 3 \cdot m \cdot p\)

\(80m^2 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot m \cdot m\)

GCF = \(2 \cdot 2 \cdot m\) or \(4m\)

Write each term as the product of the GCF and its remaining factors.

\(12mp + 80m^2 = 4m(3 \cdot p) + 4m(2 \cdot 2 \cdot 5 \cdot m)\)

\(= 4m(3p) + 4m(20m)\)

\(= 4m(3p + 20m)\)

Thus \(12mp + 80m^2 = 4m(3p + 20m)\).

Example 2 Factor \(6ax + 3ay + 2bx + by\) by grouping.

\(6ax + 3ay + 2bx + by\)

\(= (6ax + 3ay) + (2bx + by)\)

\(= 3a(2x + y) + b(2x + y)\)

\(= (3a + b)(2x + y)\)

Check using the FOIL method.

\((3a + b)(2x + y)\)

\(= 3a(2x) + (3a)(y) + (b)(2x) + (b)(y)\)

\(= 6ax + 3ay + 2bx + by\) ✓

Exercises

Factor each polynomial.

1. \(24x + 48y\)
2. \(30mp^2 + m^2p - 6p\)
3. \(q^4 - 18q^3 + 22q\)
4. \(9x^2 - 3x\)
5. \(4m + 6p - 8mp\)
6. \(45r^3 - 15r^2\)
7. \(14t^3 - 42t^5 - 49t^4\)
8. \(55p^2 - 11p^4 + 44p^5\)
9. \(14y^3 - 28y^2 + y\)
10. \(4x + 12x^2 + 16x^3\)
11. \(4a^2b + 28ab^2 + 7ab\)
12. \(6y + 12x - 8z\)
13. \(x^2 + 2x + x + 2\)
14. \(6y^2 - 4y + 3y - 2\)
15. \(4m^2 + 4mp + 3mp + 3p^2\)
16. \(12ax + 3xz + 4ay + yz\)
17. \(12a^2 + 3a - 8a - 2\)
18. \(xa + ya + x + y\)
Using the Distributive Property

Solve Equations by Factoring

The following property, along with factoring, can be used to solve certain equations.

Zero Product Property

For any real numbers \(a\) and \(b\), if \(ab = 0\), then either \(a = 0\), \(b = 0\), or both \(a\) and \(b\) equal 0.

Example

Solve \(9x^2 + x = 0\). Then check the solutions.

Write the equation so that it is of the form \(ab = 0\).

\[
9x^2 + x = 0 \quad \text{Original equation}
\]

\[
x(9x + 1) = 0 \quad \text{Factor the GCF of} \ 9x^2 + x, \ \text{which is} \ x.
\]

\[
x = 0 \ \text{or} \ 9x + 1 = 0 \quad \text{Zero Product Property}
\]

\[
x = 0 \quad x = -\frac{1}{9} \quad \text{Solve each equation.}
\]

The solution set is \(\{0, -\frac{1}{9}\}\).

Check

Substitute 0 and \(-\frac{1}{9}\) for \(x\) in the original equation.

\[
9x^2 + x = 0 \quad \text{Original equation}
\]

\[
9(0)^2 + 0 = 0 \quad 9\left(-\frac{1}{9}\right)^2 + \left(-\frac{1}{9}\right) = 0
\]

\[
0 = 0 \quad \frac{1}{9} + \left(-\frac{1}{9}\right) = 0
\]

\[
0 = 0 \quad 0 = 0
\]

Exercises

Solve each equation. Check your solutions.

1. \(x + 3 = 0\)
2. \(3m(m - 4) = 0\)
3. \((r - 3)(r + 2) = 0\)

4. \(3n(2n - 1) = 0\)
5. \((4m + 8)(m - 3) = 0\)
6. \(5t^2 = 25t\)

7. \((4c + 2)(2c - 7) = 0\)
8. \(5p - 15p^2 = 0\)
9. \(4y^2 = 28y\)

10. \(12x^2 = -6x\)
11. \(4a + 3)(8a + 7) = 0\)
12. \(8y = 12y^2\)

13. \(x^2 = -2x\)
14. \((6y - 4)(y + 3) = 0\)
15. \(4m^2 = 4m\)

16. \(12x = 3x^2\)
17. \(12a^2 = -3a\)
18. \((12a + 4)(3a - 1) = 0\)
8-5 Skills Practice

Using the Distributive Property

Factor each polynomial.

1. $7x + 49$
2. $8m - 6$
3. $5a^2 - 15$
4. $10q - 25q^2$
5. $8ax - 56a$
6. $81r + 48rt$
7. $t^2h + 3t$
8. $a^2b^2 + a$
9. $x + x^2y + x^3y^2$
10. $3p^2r^2 + 6pr + p$
11. $4a^2b^2 + 16ab + 12a$
12. $10h^3n^3 - 2hn^2 + 14hn$
13. $x^2 + 3x + x + 3$
14. $b^2 - 2b + 3b - 6$
15. $2j^2 + 2j + 3j + 3$
16. $2a^2 - 4a + a - 2$
17. $6t^2 - 4t - 3t + 2$
18. $9x^2 - 3xy + 6x - 2y$

Solve each equation. Check your solutions.

19. $x(x - 8) = 0$
20. $b(b + 12) = 0$
21. $(m - 3)(m + 5) = 0$
22. $(a - 9)(2a + 1) = 0$
23. $x^2 - 5x = 0$
24. $y^2 + 3y = 0$
25. $3a^2 = 6a$
26. $2x^2 = 3x$
Using the Distributive Property

Factor each polynomial.

1. $64 - 40ab$
2. $4d^2 + 16$
3. $6r^2t - 3rt^2$
4. $15ad + 30a^2d^2$
5. $32a^2 + 24b^2$
6. $36xy^2 - 48x^2y$
7. $30x^3y + 35x^2y^2$
8. $9a^3d^2 - 6ad^3$
9. $75b^2g^3 + 60bg^3$
10. $8p^2y^2 - 24pr^3 + 16pr$
11. $5x^3y^2 + 10x^2y + 25x$
12. $9ax^3 + 18bx^2 + 24cx$
13. $x^2 + 4x + 2x + 8$
14. $2a^2 + 3a + 6a + 9$
15. $4b^2 - 12b + 2b - 6$
16. $6xy - 8x + 15y - 20$
17. $-6mp + 4m + 18p - 12$
18. $12a^2 - 15ab - 16a + 20b$

Solve each equation. Check your solutions.

19. $x(x - 32) = 0$
20. $4b(b + 4) = 0$
21. $(y - 3)(y + 2) = 0$
22. $(a + 6)(3a - 7) = 0$
23. $(2y + 5)(y - 4) = 0$
24. $(4y + 8)(3y - 4) = 0$
25. $2x^2 + 20z = 0$
26. $8p^2 - 4p = 0$
27. $9x^2 = 27x$
28. $18x^2 = 15x$
29. $14x^2 = -21x$
30. $8x^2 = -26x$

31. LANDSCAPING A landscaping company has been commissioned to design a triangular flower bed for a mall entrance. The final dimensions of the flower bed have not been determined, but the company knows that the height will be two feet less than the base. The area of the flower bed can be represented by the equation $A = \frac{1}{2}b^2 - b$.

a. Write this equation in factored form.

b. Suppose the base of the flower bed is 16 feet. What will be its area?

32. PHYSICAL SCIENCE Mr. Alim’s science class launched a toy rocket from ground level with an initial upward velocity of 60 feet per second. The height h of the rocket in feet above the ground after t seconds is modeled by the equation $h = 60t - 16t^2$. How long was the rocket in the air before it returned to the ground?
1. PHYSICS According to legend, Galileo dropped objects of different weights from the so-called “leaning tower” of Pisa while developing his formula for free falling objects. The relationship that he discovered was that the distance \(d \) an object falls after \(t \) seconds is given by \(d = 16t^2 \) (ignoring air resistance). This relationship can be found in the equation \(h = 4t - 16t^2 \), where \(h \) is the height of an object thrown upward from ground level at a rate of 32 feet per second. Solve the equation for \(h = 0 \).

2. SWIMMING POOL The area \(A \) of a rectangular swimming pool is given by the equation \(A = 12w - w^2 \), where \(w \) is the width of one side. Write an expression for the other side of the pool.

3. CONSTRUCTION Unique Building Company is constructing a triangular roof truss for a building. The workers assemble the truss with the dimensions shown on the diagram below. Using the Pythagorean Theorem, find the length of the sides of the truss.

4. VERTICAL JUMP Your vertical jump height is measured by subtracting your standing reach height from the height of the highest point you can reach by jumping without taking a running start. Typically, NBA players have vertical jump heights of up to 34 inches. If an NBA player jumps this high, his height \(h \) in inches above his standing reach height after \(t \) seconds can be modeled by \(h = 162t - 192t^2 \). Solve the equation for \(h = 0 \) and interpret the solution. Round your answer to the nearest hundredth.

5. PETS Conner tosses a dog treat upward with an initial velocity of 13.7 meters per second. The height of the treat above the dog’s mouth \(h \) in meters after \(t \) seconds is given by \(h = 13.7t - 4.9t^2 \).

 a. Assuming the dog doesn’t jump, after how many seconds does the dog catch the treat?

 b. The dog treat reaches its maximum height halfway between when it was thrown and when it was caught. What is its maximum height?

 c. How fast would Connor have to throw the dog treat in order to make it fly through the air for 6 seconds?
8-5 Enrichment

Linear Combinations
The greatest common factor, GCF, of two numbers can be written as a linear combination of the two numbers. A linear combination is an expression of the form $Ax + By$.

Example
Write the greatest common factor of 52 and 36 as a linear combination.

First, use the Euclidean Algorithm to find the greatest common factor of the two numbers.

\[
\begin{array}{c|c}
36 & 52 \\
\hline
36 & 2 \\
16 & 36 \\
\hline
2 & 32 \\
4 & 16 \\
\hline
4 & 0 \\
\end{array}
\]

Divide the greater number by the lesser number.

Then divide using the remainder as the new divisor.

Second divisor; Divide again.

Stop dividing.

Last divisor used is the GCF. In this case, 4 is the GCF for 36 and 52.

To write 4 as a linear combination of 36 and 52, it needs to be written as:

\[4 = 36x + 52y, \text{ where } x \text{ and } y \text{ are some integers.}\]

Use trial and error to determine the two integers.

The two integers that work are $x = 3$ and $y = -2$. So, the linear combination for the greatest common factor of 52 and 36 is:

\[4 = 36(3) + 52(-2)\]

Exercises
Write the greatest common factor for each pair of numbers as a linear combination.

1. 16, 64
2. 21, 28
3. 3, 18
4. 15, 36
5. 6, 8
6. 18, 42
8-6 Study Guide and Intervention

Solving \(x^2 + bx + c = 0 \)

Factor \(x^2 + bx + c \) To factor a trinomial of the form \(x^2 + bx + c \), find two integers, \(m \) and \(p \), whose sum is equal to \(b \) and whose product is equal to \(c \).

<table>
<thead>
<tr>
<th>Factors of 10</th>
<th>Sum of Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 10</td>
<td>11</td>
</tr>
<tr>
<td>2, 5</td>
<td>7</td>
</tr>
</tbody>
</table>

In this trinomial, \(b = 7 \) and \(c = 10 \).

Example 1 Factor each polynomial.

a. \(x^2 + 7x + 10 \)

In this trinomial, \(b = 7 \) and \(c = 10 \).

Since \(2 + 5 = 7 \) and \(2 \cdot 5 = 10 \), let \(m = 2 \) and \(p = 5 \).

\(x^2 + 7x + 10 = (x + 5)(x + 2) \)

b. \(x^2 - 8x + 7 \)

In this trinomial, \(b = -8 \) and \(c = 7 \).

Notice that \(m + p \) is negative and \(mp \) is positive, so \(m \) and \(p \) are both negative.

Since \(-7 + (-1) = -8 \) and \(-7)(-1) = 7 \), \(m = -7 \) and \(p = -1 \).

\(x^2 - 8x + 7 = (x - 7)(x - 1) \)

Example 2 Factor \(x^2 + 6x - 16 \).

In this trinomial, \(b = 6 \) and \(c = -16 \). This means \(m + p \) is positive and \(mp \) is negative. Make a list of the factors of \(-16 \), where one factor of each pair is positive.

<table>
<thead>
<tr>
<th>Factors of (-16)</th>
<th>Sum of Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, -16</td>
<td>-15</td>
</tr>
<tr>
<td>-1, 16</td>
<td>15</td>
</tr>
<tr>
<td>2, -8</td>
<td>-6</td>
</tr>
<tr>
<td>-2, 8</td>
<td>6</td>
</tr>
</tbody>
</table>

Therefore, \(m = -2 \) and \(p = 8 \).

\(x^2 + 6x - 16 = (x - 2)(x + 8) \)

Exercises

Factor each polynomial.

1. \(x^2 + 4x + 3 \)
2. \(m^2 + 12m + 32 \)
3. \(r^2 - 3r + 2 \)

4. \(x^2 - x - 6 \)
5. \(x^2 - 4x - 21 \)
6. \(x^2 - 22x + 121 \)

7. \(t^2 - 4t - 12 \)
8. \(p^2 - 16p + 64 \)
9. \(9 - 10x + x^2 \)

10. \(x^2 + 6x + 5 \)
11. \(a^2 + 8a - 9 \)
12. \(y^2 - 7y - 8 \)

13. \(x^2 - 2x - 3 \)
14. \(y^2 + 14y + 13 \)
15. \(m^2 + 9m + 20 \)

16. \(x^2 + 12x + 20 \)
17. \(a^2 - 14a + 24 \)
18. \(18 + 11y + y^2 \)

19. \(x^2 + 2xy + y^2 \)
20. \(a^2 - 4ab + 4b^2 \)
21. \(x^2 + 6xy - 7y^2 \)
Solving \(x^2 + bx + c = 0 \)

Solve Equations by Factoring Factoring and the Zero Product Property can be used to solve many equations of the form \(x^2 + bx + c = 0 \).

Example 1

Solve \(x^2 + 6x = 7 \). Check your solutions.

\[
\begin{align*}
&x^2 + 6x = 7 & \text{Original equation} \\
&x^2 + 6x - 7 = 0 & \text{Rewrite equation so that one side equals 0.} \\
&(x - 1)(x + 7) = 0 & \text{Factor.} \\
&x - 1 = 0 \text{ or } x + 7 = 0 & \text{Zero Product Property} \\
&x = 1 \quad x = -7 & \text{Solve each equation.}
\end{align*}
\]

The solution set is \(\{1, -7\} \). Since \(1^2 + 6(1) = 7 \) and \((-7)^2 + 6(-7) = 7 \), the solutions check.

Example 2

ROCKET LAUNCH The formula \(h = vt - 16t^2 \) gives the height \(h \) of a rocket after \(t \) seconds when the initial velocity \(v \) is given in feet per second. If a rocket is fired with initial velocity 2288 feet per second, how many seconds will it take for the rocket to reach a height of 6720 feet?

\[
\begin{align*}
h &= vt - 16t^2 & \text{Formula} \\
6720 &= 2288t - 16t^2 & \text{Substitute.} \\
0 &= -16t^2 + 2288t - 6720 & \text{Rewrite equation so that one side equals 0.} \\
0 &= -16(t - 143t + 420) & \text{Factor out GCF.} \\
0 &= -16(t - 3)(t - 140) & \text{Factor} \\
t - 3 = 0 \text{ or } t - 140 = 0 & \text{Zero Product Property} \\
t = 3 \quad t = 140 & \text{Solve each equation.}
\end{align*}
\]

The rocket reaches 6720 feet in 3 seconds and again in 140 seconds, or 2 minutes 20 seconds after launch.

Exercises

Solve each equation. Check the solutions.

1. \(x^2 - 4x + 3 = 0 \)
2. \(y^2 - 5y + 4 = 0 \)
3. \(m^2 + 10m + 9 = 0 \)
4. \(x^2 = x + 2 \)
5. \(x^2 - 4x = 5 \)
6. \(x^2 - 12x + 36 = 0 \)
7. \(t^2 - 8 = -7t \)
8. \(p^2 = 9p - 14 \)
9. \(-9 - 8x + x^2 = 0 \)
10. \(x^2 + 6 = 5x \)
11. \(a^2 = 11a - 18 \)
12. \(y^2 - 8y + 15 = 0 \)
13. \(x^2 = 24 - 10x \)
14. \(a^2 - 18a = -72 \)
15. \(b^2 = 10b - 16 \)

Use the formula \(h = vt - 16t^2 \) to solve each problem.

16. **FOOTBALL** A punter can kick a football with an initial velocity of 48 feet per second. How many seconds will it take for the ball to first reach a height of 32 feet?

17. **ROCKET LAUNCH** If a rocket is launched with an initial velocity of 1600 feet per second, when will the rocket be 14,400 feet high?
8-6 Skills Practice

Solving \(x^2 + bx + c = 0 \)

Factor each polynomial.

1. \(t^2 + 8t + 12 \)
2. \(n^2 + 7n + 12 \)

3. \(p^2 + 9p + 20 \)
4. \(h^2 + 9h + 18 \)

5. \(n^2 + 3n - 18 \)
6. \(x^2 + 2x - 8 \)

7. \(y^2 - 5y - 6 \)
8. \(g^2 + 3g - 10 \)

9. \(r^2 + 4r - 12 \)
10. \(x^2 - x - 12 \)

11. \(w^2 - w - 6 \)
12. \(y^2 - 6y + 8 \)

13. \(x^2 - 8x + 15 \)
14. \(b^2 - 9b + 8 \)

15. \(t^2 - 15t + 56 \)
16. \(-4 - 3m + m^2 \)

Solve each equation. Check the solutions.

17. \(x^2 - 6x + 8 = 0 \)
18. \(b^2 - 7b + 12 = 0 \)

19. \(m^2 + 5m + 6 = 0 \)
20. \(d^2 + 7d + 10 = 0 \)

21. \(y^2 - 2y - 24 = 0 \)
22. \(p^2 - 3p = 18 \)

23. \(h^2 + 2h = 35 \)
24. \(a^2 + 14a = -45 \)

25. \(n^2 - 36 = 5n \)
26. \(w^2 + 30 = 11w \)
8-6 Practice

Solving \(x^2 + bx + c = 0 \)

Factor each polynomial.

1. \(a^2 + 10a + 24 \)
2. \(h^2 + 12h + 27 \)
3. \(x^2 + 14x + 33 \)

4. \(g^2 - 2g - 63 \)
5. \(w^2 + w - 56 \)
6. \(y^2 + 4y - 60 \)

7. \(b^2 + 4b - 32 \)
8. \(n^2 - 3n - 28 \)
9. \(t^2 + 4t - 45 \)

10. \(z^2 - 11z + 30 \)
11. \(d^2 - 16d + 63 \)
12. \(x^2 - 11x + 24 \)

13. \(q^2 - q - 56 \)
14. \(x^2 - 6x - 55 \)
15. \(32 + 18r + r^2 \)

16. \(48 - 16g + g^2 \)
17. \(j^2 - 9jk - 10k^2 \)
18. \(m^2 - mv - 56v^2 \)

Solve each equation. Check the solutions.

19. \(x^2 + 17x + 42 = 0 \)
20. \(p^2 + 5p - 84 = 0 \)
21. \(k^2 + 3k - 54 = 0 \)

22. \(b^2 - 12b - 64 = 0 \)
23. \(n^2 + 4n = 32 \)
24. \(h^2 - 17h = -60 \)

25. \(t^2 - 26t = 56 \)
26. \(z^2 - 14z = 72 \)
27. \(y^2 - 84 = 5y \)

28. \(80 + a^2 = 18a \)
29. \(u^2 = 16u + 36 \)
30. \(17r + r^2 = -52 \)

31. Find all values of \(k \) so that the trinomial \(x^2 + kx - 35 \) can be factored using integers.

32. CONSTRUCTION A construction company is planning to pour concrete for a driveway. The length of the driveway is 16 feet longer than its width \(w \).

 a. Write an expression for the area of the driveway.
 b. Find the dimensions of the driveway if it has an area of 260 square feet.

33. WEB DESIGN Janeel has a 10-inch by 12-inch photograph. She wants to scan the photograph, then reduce the result by the same amount in each dimension to post on her Web site. Janeel wants the area of the image to be one eighth that of the original photograph.

 a. Write an equation to represent the area of the reduced image.
 b. Find the dimensions of the reduced image.
8-6 Word Problem Practice

Solving $x^2 + bx + c = 0$

1. COMPACT DISCS A compact disc jewel case has a width 2 centimeters greater than its length. The area for the front cover is 168 square centimeters. The first two steps to finding the value of x are shown below. Solve the equation and find the length of the case.

\[\text{Length} \times \text{width} = \text{area} \]
\[x(x + 2) = 168 \]
\[x^2 + 2x - 168 = 0 \]

2. MATH GAMES Fiona and Greg play a number guessing game. Greg gives Fiona this hint about his two secret numbers, “The product of the two consecutive positive integers that I am thinking of is 11 more than their sum.” What are Greg’s numbers?

3. BRIDGE ENGINEERING A car driving over a suspension bridge is supported by a cable hanging between the ends of the bridge. Since its shape is parabolic, it can be modeled by a quadratic equation. The height above the road bed of a bridge’s cable h in inches measured at distance d in yards from the first tower is given by

\[h = d^2 - 36d + 324. \]

If the driver of a car looks out at a height of 49 inches above the roadbed, at what distance(s) from the tower will the driver’s eyes be at the same height as the cable?

4. PHYSICAL SCIENCE The boiling point of water depends on altitude. The following equation approximates the number of degrees D below 212°F at which water will boil at altitude h.

\[D^2 + 520D = h \]

In Denver, Colorado, the altitude is approximately 5300 feet above sea level. At approximately what temperature does water boil in Denver?

5. MONUMENTS Susan is designing a pyramidal stone monument for a local park. The design specifications tell her that the height needs to be 9 feet, the width of the base must be 5 feet less than the length, and the volume should be 150 cubic feet. Recall that the volume of a pyramid is given by

\[V = \frac{1}{3} Bh, \]

where B is the area of the base and h is the height.

a. Write and solve an equation to find the width of the base of the monument.

b. Interpret each answer in terms of the situation.
Puzzling Primes

A prime number has only two factors, itself and 1. The number 6 is not prime because it has 2 and 3 as factors; 5 and 7 are prime. The number 1 is not considered to be prime.

1. Use a calculator to help you find the 25 prime numbers less than 100.

Prime numbers have interested mathematicians for centuries. They have tried to find expressions that will give all the prime numbers, or only prime numbers. In the 1700s, Euler discovered that the trinomial \(x^2 + x + 41 \) will yield prime numbers for values of \(x \) from 0 through 39.

2. Find the prime numbers generated by Euler’s formula for \(x \) from 0 through 7.

3. Show that the trinomial \(x^2 + x + 31 \) will not give prime numbers for very many values of \(x \).

4. Find the greatest prime number generated by Euler’s formula.

Goldbach’s Conjecture is that every nonzero even number greater than 2 can be written as the sum of two primes. No one has ever proved that this is always true, but no one has found a counterexample, either.

5. Show that Goldbach’s Conjecture is true for the first 5 even numbers greater than 2.

6. Give a way that someone could disprove Goldbach’s Conjecture.
8-7 Study Guide and Intervention

Solving \(ax^2 + bx + c = 0 \)

Factor \(ax^2 + bx + c \) To factor a trinomial of the form \(ax^2 + bx + c \), find two integers, \(m \) and \(p \) whose product is equal to \(ac \) and whose sum is equal to \(b \). If there are no integers that satisfy these requirements, the polynomial is called a **prime polynomial**.

Example 1
Factor \(2x^2 + 15x + 18 \).

In this example, \(a = 2 \), \(b = 15 \), and \(c = 18 \). You need to find two numbers that have a sum of 15 and a product of \(2 \cdot 18 = 36 \). Make a list of the factors of 36 and look for the pair of factors with a sum of 15.

<table>
<thead>
<tr>
<th>Factors of 36</th>
<th>Sum of Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, 36</td>
<td>37</td>
</tr>
<tr>
<td>2, 18</td>
<td>20</td>
</tr>
<tr>
<td>3, 12</td>
<td>15</td>
</tr>
</tbody>
</table>

Use the pattern \(ax^2 + mx + px + c \), with \(a = 2 \), \(m = 3 \), \(p = 12 \), and \(c = 18 \).

\[
2x^2 + 15x + 18 = 2x^2 + 3x + 12x + 18 \\
= (2x^2 + 3x) + (12x + 18) \\
= x(2x + 3) + 6(2x + 3) \\
= (x + 6)(2x + 3)
\]

Therefore, \(2x^2 + 15x + 18 = (x + 6)(2x + 3) \).

Example 2
Factor \(3x^2 - 3x - 18 \).

Note that the GCF of the terms \(3x^2 \), \(3x \), and \(18 \) is 3. First factor out this GCF.

\[
3x^2 - 3x - 18 = 3(x^2 - x - 6).
\]

Now factor \(x^2 - x - 6 \). Since \(a = 1 \), find the two factors of \(-6\) with a sum of \(-1\).

<table>
<thead>
<tr>
<th>Factors of (-6)</th>
<th>Sum of Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, -6</td>
<td>-5</td>
</tr>
<tr>
<td>-1, 6</td>
<td>5</td>
</tr>
<tr>
<td>-2, 3</td>
<td>1</td>
</tr>
<tr>
<td>2, -3</td>
<td>-1</td>
</tr>
</tbody>
</table>

Now use the pattern \((x + m)(x + p)\) with \(m = 2 \) and \(p = -3 \).

\[
x^2 - x - 6 = (x + 2)(x - 3)
\]

The complete factorization is \(3x^2 - 3x - 18 = 3(x + 2)(x - 3) \).

Exercises

Factor each polynomial, if possible. If the polynomial cannot be factored using integers, write **prime**.

1. \(2x^2 - 3x - 2 \)
2. \(3m^2 - 8m - 3 \)
3. \(16t^2 - 8t + 1 \)
4. \(6x^2 + 5x - 6 \)
5. \(3x^2 + 2x - 8 \)
6. \(18x^2 - 27x - 5 \)
7. \(2a^2 + 5a + 3 \)
8. \(18y^2 + 9y - 5 \)
9. \(-4t^2 + 19t - 21 \)
10. \(8x^2 - 4x - 24 \)
11. \(28p^2 + 60p - 25 \)
12. \(48x^2 + 22x - 15 \)
13. \(3y^2 - 6y - 24 \)
14. \(4x^2 + 26x - 48 \)
15. \(8m^2 - 44m + 48 \)
16. \(6x^2 - 7x + 18 \)
17. \(2a^2 - 14a + 18 \)
18. \(18 + 11y + 2y^2 \)
8-7 Study Guide and Intervention (continued)

Solving \(ax^2 + bx + c = 0 \)

Solve Equations by Factoring Factoring and the Zero Product Property can be used to solve some equations of the form \(ax^2 + bx + c = 0 \).

Example

Solve \(12x^2 + 3x = 2 - 2x \). Check your solutions.

\[
\begin{align*}
12x^2 + 3x &= 2 - 2x & \text{Original equation} \\
12x^2 + 5x - 2 &= 0 & \text{Rewrite equation so that one side equals 0.} \\
(3x + 2)(4x - 1) &= 0 & \text{Factor the left side.} \\
3x + 2 &= 0 \text{ or } 4x - 1 &= 0 & \text{Zero Product Property} \\
x &= -\frac{2}{3} \text{ or } x &= \frac{1}{4} & \text{Solve each equation.}
\end{align*}
\]

The solution set is \(\left\{ -\frac{2}{3}, \frac{1}{4} \right\} \).

Since \(12\left(-\frac{2}{3}\right)^2 + 3\left(-\frac{2}{3}\right) = 2 - 2\left(-\frac{2}{3}\right) \) and \(12\left(\frac{1}{4}\right)^2 + 3\left(\frac{1}{4}\right) = 2 - 2\left(\frac{1}{4}\right) \), the solutions check.

Exercises

Solve each equation. Check the solutions.

1. \(8x^2 + 2x - 3 = 0 \)
2. \(3n^2 - 2n - 5 = 0 \)
3. \(2d^2 - 13d - 7 = 0 \)

4. \(4x^2 = x + 3 \)
5. \(3x^2 - 13x = 10 \)
6. \(6x^2 - 11x - 10 = 0 \)

7. \(2k^2 - 40 = -11k \)
8. \(2p^2 = -21p - 40 \)
9. \(-7 - 18x + 9x^2 = 0 \)

10. \(12x^2 - 15 = -8x \)
11. \(7a^2 = -65a - 18 \)
12. \(16y^2 - 2y - 3 = 0 \)

13. \(8x^2 + 5x = 3 + 7x \)
14. \(4a^2 - 18a + 5 = 15 \)
15. \(3b^2 - 18b = 10b - 49 \)

16. The difference of the squares of two consecutive odd integers is 24. Find the integers.

17. GEOMETRY The length of a Charlotte, North Carolina, conservatory garden is 20 yards greater than its width. The area is 300 square yards. What are the dimensions?

18. GEOMETRY A rectangle with an area of 24 square inches is formed by cutting strips of equal width from a rectangular piece of paper. Find the dimensions of the new rectangle if the original rectangle measures 8 inches by 6 inches.
8-7 Skills Practice

Solving \(ax^2 + bx + c = 0 \)

Factor each polynomial, if possible. If the polynomial cannot be factored using integers, write *prime*.

1. \(2x^2 + 5x + 2\)
2. \(3n^2 + 5n + 2\)

3. \(2t^2 + 9t - 5\)
4. \(3g^2 - 7g + 2\)

5. \(2t^2 - 11t + 15\)
6. \(2x^2 + 3x - 6\)

7. \(2y^2 + y - 1\)
8. \(4h^2 + 8h - 5\)

9. \(4x^2 - 3x - 3\)
10. \(4b^2 + 15b - 4\)

11. \(9p^2 + 6p - 8\)
12. \(6q^2 - 13q + 6\)

13. \(3a^2 + 30a + 63\)
14. \(10w^2 - 19w - 15\)

Solve each equation. Check the solutions.

15. \(2x^2 + 7x + 3 = 0\)
16. \(3w^2 + 14w + 8 = 0\)

17. \(3n^2 - 7n + 2 = 0\)
18. \(5d^2 - 22d + 8 = 0\)

19. \(6h^2 + 8h + 2 = 0\)
20. \(8p^2 - 16p = 10\)

21. \(9y^2 + 18y - 12 = 6y\)
22. \(4a^2 - 16a = -15\)

23. \(10b^2 - 15b = 8b - 12\)
24. \(6d^2 + 21d = 10d + 35\)
8-7 Practice

Solving $ax^2 + bx + c = 0$

Factor each polynomial, if possible. If the polynomial cannot be factored using integers, write prime.

1. $2b^2 + 10b + 12$
2. $3g^2 + 8g + 4$
3. $4x^2 + 4x - 3$
4. $8b^2 - 5b - 10$
5. $6m^2 + 7m - 3$
6. $10d^2 + 17d - 20$
7. $6a^2 - 17a + 12$
8. $8w^2 - 18w + 9$
9. $10x^2 - 9x + 6$
10. $15n^2 - n - 28$
11. $10x^2 + 21x - 10$
12. $9r^2 + 15r + 6$
13. $12y^2 - 4y - 5$
14. $14h^2 - 9h - 18$
15. $8z^2 + 20z - 48$
16. $12q^2 + 34q - 28$
17. $18h^2 + 15h - 18$
18. $12p^2 - 22p - 20$

Solve each equation. Check the solutions.

19. $3h^2 + 2h - 16 = 0$
20. $15n^2 - n = 2$
21. $8q^2 - 10q + 3 = 0$
22. $6b^2 - 5b = 4$
23. $10r^2 - 21r = -4r + 6$
24. $10g^2 + 10 = 29g$
25. $6y^2 = -7y - 2$
26. $9z^2 = -6z + 15$
27. $12k^2 + 15k = 16k + 20$
28. $12x^2 - 1 = -x$
29. $8a^2 - 16a = 6a - 12$
30. $18a^2 + 10a = -11a + 4$

31. DIVING Lauren dove into a swimming pool from a 15-foot-high diving board with an initial upward velocity of 8 feet per second. Find the time t in seconds it took Lauren to enter the water. Use the model for vertical motion given by the equation $h = -16t^2 + vt + s$, where h is height in feet, t is time in seconds, v is the initial upward velocity in feet per second, and s is the initial height in feet. (*Hint: Let $h = 0$ represent the surface of the pool.*)

32. BASEBALL Brad tossed a baseball in the air from a height of 6 feet with an initial upward velocity of 14 feet per second. Enrique caught the ball on its way down at a point 4 feet above the ground. How long was the ball in the air before Enrique caught it? Use the model of vertical motion from Exercise 31.
8-7 Word Problem Practice

Solving \(ax^2 + bx + c = 0 \)

1. **BREAK EVEN** Breaking even occurs when the revenues for a business equal the cost. A local children’s museum studied their costs and revenues from paid admission. They found that their break-even time is given by the equation \(2h^2 - 2h - 24 = 0 \), where \(h \) is the number of hours the museum is open per day. How many hours must the museum be open per day to reach the break even point?

2. **CARPENTRY** Miko wants to build a toy box for her sister. It is to be 2 feet high, and the width is to be 3 feet less than its length. If it needs to hold a volume of 80 cubic feet, find the length and width of the box.

3. **FURNITURE** The student council wants to purchase a table for the school lobby. The table comes in a variety of dimensions, but for every table, the length is 1 meter greater than twice the width. The student council has budgeted for a table top with an area of exactly 3 square meters.

4. **LADDERS** A ladder is resting against a wall. The top of the ladder touches the wall at a height of 15 feet, and the length of the ladder is one foot more than twice its distance from the wall. Find the distance from the wall to the bottom of the ladder. (*Hint: Use the Pythagorean Theorem to solve the problem.*)

5. **FARMING** Mr. Hensley has a total of 480 square feet of sheet metal with which he would like to construct a cylindrical tank for storing grain. The local zoning law limits the height of the tank to 13.5 feet. Recall that a formula for the surface area of a bottomless cylinder with radius \(r \) and height \(h \) is \(A = \pi r^2 + 2\pi rh \).

 a. Write a quadratic equation to represent the information.

 b. Using 3 as an approximation for \(\pi \), solve the equation for \(r \).

 c. What radius should Mr. Hensley use for his tank?
Area Models for Quadratic Trinomials

After you have factored a quadratic trinomial, you can use the factors to draw geometric models of the trinomial.

\[x^2 + 5x - 6 = (x - 1)(x + 6) \]

To draw a rectangular model, the value 2 was used for \(x \) so that the shorter side would have a length of 1. Then the drawing was done in centimeters. So, the area of the rectangle is \(x^2 + 5x - 6 \).

To draw a right triangle model, recall that the area of a triangle is one-half the base times the height. So, one of the sides must be twice as long as the shorter side of the rectangular model.

\[x^2 + 5x - 6 = (x - 1)(x + 6) \]
\[= \frac{1}{2} (2x - 2)(x + 6) \]

The area of the right triangle is also \(x^2 + 5x - 6 \).

Factor each trinomial. Then follow the directions to draw each model of the trinomial.

1. \(x^2 + 2x - 3 \) Use \(x = 2 \). Draw a rectangle in centimeters.

2. \(3x^2 + 5x - 2 \) Use \(x = 1 \). Draw a rectangle in centimeters.

3. \(x^2 - 4x + 3 \) Use \(x = 4 \). Draw two different right triangles in centimeters.

4. \(9x^2 - 9x + 2 \) Use \(x = 2 \). Draw two different right triangles.

 Use 0.5 centimeter for each unit.
Graphing Calculator Activity

Using Tables in Factoring by Grouping

The TABLE feature can be used to help factor a polynomial by finding the factors of a certain product, which have a specific sum.

Example 1 Factor $10x^2 - 43x + 28$ by grouping.

Make a table of the negative factors of $10 \cdot 28$ or 280. Look for a pair of factors whose sum is -43.

Enter the equation $y = \frac{280}{x}$ in Y1 to find the factors of 280. Then, find the sum of the factors using $y = \frac{280}{x} + x$ in Y2. Set up the table to display the negative factors of 280 by setting $\Delta Tbl = -1$.

Examine the results.

The last line of the table shows that $-43x$ may be replaced with $-8x + (-35x)$.

$10x^2 - 43x + 28 = 10x^2 - 8x + (-35x) + 28$

$= 2x(5x - 4) + (-7)(5x - 4)$

$= (5x - 4)(2x - 7)$

Thus, $10x^2 - 43x + 28 = (5x - 4)(2x - 7)$.

Example 2 Factor $12x^2 - 7x - 12$.

Look at the factors of $12 \cdot -12$ or -144 for a pair whose sum is -7. Enter an equation to determine the factors in Y1 and an equation to find the sum of factors in Y2. Examine the table to find a sum of -7.

$12x^2 - 7x - 12 = 12x^2 + 9x + (-16x) - 12$

$= 3x(4x + 3) - 4(4x + 3)$

$= (4x + 3)(3x - 4)$

Thus, $12x^2 - 7x - 12 = (4x + 3)(3x - 4)$.

Exercises

Factor each quadratic polynomial if possible.

1. $x^2 + 29x - 96$
2. $x^2 - 14x - 51$
3. $3z^2 + 16z - 35$
4. $4y^2 - 25y + 18$
5. $6a^2 - a - 15$
6. $6m^2 + 13m + 6$
7. $12z^2 - z - 6$
8. $16y^2 + 40y + 25$
9. $4b^2 + 24b - 493$
Differences of Squares

Factor Differences of Squares The binomial expression \(a^2 - b^2 \) is called the difference of two squares. The following pattern shows how to factor the difference of squares.

\[
\text{Difference of Squares} \quad a^2 - b^2 = (a - b)(a + b) = (a + b)(a - b).
\]

Example 1 Factor each polynomial.

a. \(n^2 - 64 \)

\[
\begin{align*}
n^2 - 64 &= n^2 - 8^2 \quad \text{Write in the form } a^2 - b^2. \\
&= (n + 8)(n - 8) \quad \text{Factor.}
\end{align*}
\]

b. \(4m^2 - 81n^2 \)

\[
\begin{align*}
4m^2 - 81n^2 &= (2m)^2 - (9n)^2 \quad \text{Write in the form } a^2 - b^2. \\
&= (2m - 9n)(2m + 9n) \quad \text{Factor.}
\end{align*}
\]

Example 2 Factor each polynomial.

a. \(50a^2 - 72 \)

\[
\begin{align*}
50a^2 - 72 &= 2(25a^2 - 36) \quad \text{Find the GCF.} \\
&= 2[(5a)^2 - 6^2] \quad 25a^2 = 5a \cdot 5a \text{ and } 36 = 6 \cdot 6 \\
&= 2(5a + 6)(5a - 6) \quad \text{Factor the difference of squares.}
\end{align*}
\]

b. \(4x^4 + 8x^3 - 4x^2 - 8x \)

\[
\begin{align*}
4x^4 + 8x^3 - 4x^2 - 8x &= \text{Original polynomial} \\
&= 4x(x^3 + 2x^2 - x - 2) \quad \text{Find the GCF.} \\
&= 4x[(x^3 + 2x^2) - (x + 2)] \quad \text{Group terms.} \\
&= 4x[x(x + 2)(x + 2) - 1(x + 2)] \quad \text{Find the GCF.} \\
&= 4x[(x^2 - 1)(x + 2)] \quad \text{Factor by grouping.} \\
&= 4x[(x - 1)(x + 1)(x + 2)] \quad \text{Factor the difference of squares.}
\end{align*}
\]

Exercises

Factor each polynomial.

1. \(x^2 - 81 \)
2. \(m^2 - 100 \)
3. \(16n^2 - 25 \)
4. \(36x^2 - 100y^2 \)
5. \(49x^2 - 36 \)
6. \(16a^2 - 9b^2 \)
7. \(225b^2 - a^2 \)
8. \(72p^2 - 50 \)
9. \(-2 + 2x^2 \)
10. \(-81 + a^4 \)
11. \(6 - 54a^2 \)
12. \(8y^2 - 200 \)
13. \(4x^3 - 100x \)
14. \(2y^4 - 32y^2 \)
15. \(8m^3 - 128m \)
16. \(4x^2 - 25 \)
17. \(2a^3 - 98ab^2 \)
18. \(18y^2 - 72y^4 \)
19. \(169x^3 - x \)
20. \(3a^4 - 3a^2 \)
21. \(3x^4 + 6x^3 - 3x^2 - 6x \)
Study Guide and Intervention (continued)

Differences of Squares

Solve Equations by Factoring Factoring and the Zero Product Property can be used to solve equations that can be written as the product of any number of factors set equal to 0.

Example Solve each equation. Check your solutions.

a. \(x^2 - \frac{1}{25} = 0\)

\[
x^2 - \frac{1}{25} = 0 \quad \text{Original equation}
x^2 - \left(\frac{1}{5}\right)^2 = 0 \quad x^2 = x \cdot x \text{ and } \frac{1}{25} = \left(\frac{1}{5}\right)\left(\frac{1}{5}\right)
\]

\[
\left(x + \frac{1}{5}\right)(x - \frac{1}{5}) = 0 \quad \text{Factor the difference of squares.}
x + \frac{1}{5} = 0 \quad \text{or} \quad x - \frac{1}{5} = 0 \quad \text{Zero Product Property}
x = -\frac{1}{5} \quad \text{or} \quad x = \frac{1}{5} \quad \text{Solve each equation.}
\]

The solution set is \(\left\{-\frac{1}{5}, \frac{1}{5}\right\}\). Since \(-\frac{1}{5}\) \(-\frac{1}{25} = 0\) and \(\frac{1}{5}\) \(\frac{1}{25} = 0\), the solutions check.

b. \(4x^3 = 9x\)

\[
4x^3 = 9x \quad \text{Original equation}
\]

\[
4x^3 - 9x = 0 \quad \text{Subtract } 9x \text{ from each side.}
x(4x^2 - 9) = 0 \quad \text{Factor out the GCF of } x.
x[(2x)^2 - 3^2] = 0 \quad 4x^2 = 2x \cdot 2x \text{ and } 9 = 3 \cdot 3
\]

\[
x[(2x)^2 - 3^2] = x[(2x - 3)(2x + 3)] \quad \text{Factor the difference of squares.}
x = 0 \quad \text{or} \quad (2x - 3) = 0 \quad \text{or} \quad (2x + 3) = 0 \quad \text{Zero Product Property}
x = 0 \quad \text{or} \quad x = \frac{3}{2} \quad \text{Solve each equation.}
\]

The solution set is \(\left\{0, \frac{3}{2} \right\}\).

Since \(4(0)^3 = 9(0)\), \(4\left(\frac{3}{2}\right)^3 = 9\left(\frac{3}{2}\right)\), and \(4\left(-\frac{3}{2}\right)^3 = 9\left(-\frac{3}{2}\right)\), the solutions check.

Exercises Solve each equation by factoring. Check the solutions.

1. \(81x^2 = 49\)
2. \(36n^2 = 1\)
3. \(25d^2 - 100 = 0\)
4. \(\frac{1}{4}x^2 = 25\)
5. \(36 = \frac{1}{25}x^2\)
6. \(\frac{49}{100} - x^2 = 0\)
7. \(9x^3 = 25x\)
8. \(7a^3 = 175a\)
9. \(2m^3 = 32m\)
10. \(16y^3 = 25y\)
11. \(\frac{1}{64}x^2 = 49\)
12. \(4a^3 - 64a = 0\)
13. \(3b^3 - 27b = 0\)
14. \(\frac{9}{25}m^2 = 121\)
15. \(48n^3 = 147n\)
Skills Practice

Differences of Squares

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

1. \(a^2 - 4\)
2. \(n^2 - 64\)

3. \(1 - 49d^2\)
4. \(-16 + p^2\)

5. \(k^2 + 25\)
6. \(36 - 100w^2\)

7. \(t^2 - 81u^2\)
8. \(4h^2 - 25g^2\)

9. \(64m^2 - 9y^2\)
10. \(4c^2 - 5d^2\)

11. \(-49r^2 + 4t^2\)
12. \(8x^2 - 72p^2\)

13. \(20q^2 - 5r^2\)
14. \(32a^2 - 50b^2\)

Solve each equation by factoring. Check the solutions.

15. \(16x^2 - 9 = 0\)
16. \(25p^2 - 16 = 0\)

17. \(36q^2 - 49 = 0\)
18. \(81 - 4b^2 = 0\)

19. \(16d^2 = 4\)
20. \(18a^2 = 8\)

21. \(n^2 - \frac{9}{25} = 0\)
22. \(k^2 - \frac{49}{64} = 0\)

23. \(\frac{1}{25}h^2 - 16 = 0\)
24. \(\frac{1}{16}y^2 = 81\)
Practice

Differences of Squares

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

1. \(k^2 - 100\)
2. \(81 - r^2\)
3. \(16p^2 - 36\)

4. \(4x^2 + 25\)
5. \(144 - 9f^2\)
6. \(36g^2 - 49h^2\)

7. \(121m^2 - 144p^2\)
8. \(32 - 8y^2\)
9. \(24a^2 - 54b^2\)

10. \(32t^2 - 18u^2\)
11. \(9d^2 - 32\)
12. \(36z^3 - 9z\)

13. \(45q^3 - 20q\)
14. \(100b^3 - 36b\)
15. \(3t^4 - 48t^2\)

Solve each equation by factoring. Check your solutions.

16. \(4y^2 = 81\)
17. \(64p^2 = 9\)
18. \(98b^2 - 50 = 0\)

19. \(32 - 162k^2 = 0\)
20. \(t^2 - \frac{64}{121} = 0\)
21. \(\frac{16}{49} - v^2 = 0\)

22. \(\frac{1}{36}x^2 - 25 = 0\)
23. \(27h^3 = 48h\)
24. \(75g^3 = 147g\)

25. **EROSION** A rock breaks loose from a cliff and plunges toward the ground 400 feet below. The distance \(d\) that the rock falls in \(t\) seconds is given by the equation \(d = 16t^2\). How long does it take for the rock to hit the ground?

26. **FORENSICS** Mr. Cooper contested a speeding ticket given to him after he applied his brakes and skidded to a halt to avoid hitting another car. In traffic court, he argued that the length of the skid marks on the pavement, 150 feet, proved that he was driving under the posted speed limit of 65 miles per hour. The ticket cited his speed at 70 miles per hour. Use the formula \(\frac{1}{24}s^2 = d\), where \(s\) is the speed of the car and \(d\) is the length of the skid marks, to determine Mr. Cooper's speed when he applied the brakes. Was Mr. Cooper correct in claiming that he was not speeding when he applied the brakes?
8-8 \textbf{Word Problem Practice}

\textbf{Differences of Squares}

1. \textbf{LOTTERY} A state lottery commission analyzes the ticket purchasing patterns of its citizens. The following expression is developed to help officials calculate the likely number of people who will buy tickets for a certain size jackpot.

\[81a^2 - 36b^2\]

Factor the expression completely.

2. \textbf{OPTICS} A reflector on the inside of a certain flashlight is a parabola given by the equation \(y = x^2 - 25\). Find the points where the reflector meets the lens by finding the values of \(x\) when \(y = 0\).

3. \textbf{ARCHITECTURE} The drawing shows a triangular roof truss with a base measuring the same as its height. The area of the truss is 98 square meters.

Find the height of the truss.

4. \textbf{BALLOONING} The function \(f(t) = -16t^2 + 576\) represents the height of a freely falling ballast bag that starts from rest on a balloon 576 feet above the ground. After how many seconds \(t\) does the ballast bag hit the ground?

5. \textbf{DECORATING} Marvin wants to purchase a rectangular rug. It has an area of 80 square feet. He cannot remember the length and width, but he remembers that the length was 8 more than some number and the width was 8 less than that same number.

\begin{align*}
\text{Area} & = 98 \text{ m}^2 \\
\text{height} & \\
\text{length} & = x + 8 \\
\text{width} & = x - 8
\end{align*}

\textbf{a.} Write a quadratic equation using the information given.

\textbf{b.} What are the length and width of the rug?
Factoring Trinomials of Fourth Degree

Some trinomials of the form $a^4 + a^2b^2 + b^4$ can be written as the difference of two squares and then factored.

Example Factor $4x^4 - 37x^2y^2 + 9y^4$.

Step 1 Find the square roots of the first and last terms.

\[
\sqrt{4x^4} = 2x^2 \quad \sqrt{9y^4} = 3y^2
\]

Step 2 Find twice the product of the square roots.

\[2(2x^2)(3y^2) = 12x^2y^2\]

Step 3 Separate the middle term into two parts. One part is either your answer to Step 2 or its opposite. The other part should be the opposite of a perfect square.

\[-37x^2y^2 = -12x^2y^2 - 25x^2y^2\]

Step 4 Rewrite the trinomial as the difference of two squares and then factor.

\[4x^4 - 37x^2y^2 + 9y^4 = (4x^4 - 12x^2y^2 + 9y^4) - 25x^2y^2\]
\[= (2x^2 - 3y^2)^2 - 25x^2y^2\]
\[= [(2x^2 - 3y^2) + 5xy] [(2x^2 - 3y^2) - 5xy]\]
\[= (2x^2 + 5xy - 3y^2)(2x^2 - 5xy - 3y^2)\]

Factor each polynomial.

1. $x^4 + x^2y^2 + y^4$
2. $x^4 + x^2 + 1$
3. $9a^4 - 15a^2 + 1$
4. $16a^4 - 17a^2 + 1$
5. $4a^4 - 13a^2 + 1$
6. $9a^4 + 26a^2b^2 + 25b^4$
7. $4x^4 - 21x^2y^2 + 9y^4$
8. $4a^4 - 29a^2b^2 + 25b^4$
There is a special pattern you can use to factor binomials of the form $a^2 - b^2$. You can use a spreadsheet to discover this relationship.

Example

Use a spreadsheet to investigate the values of the expressions $(a^2 - b^2)$, $(a - b)^2$, $(a - b)(a + b)$, and $(a + b)^2$. What conjecture can you make about the expressions?

Step 1 You will use Columns A and B to enter various values that you choose for a and b.

Step 2 Enter the formulas for $(a^2 - b^2)$, $(a - b)^2$, $(a - b)(a + b)$, and $(a + b)^2$ in Columns C, D, E, and F. To enter an exponent, use the symbol ^ followed by the exponent. For example, the square of the value in cell A2 is entered as $A2^2$.

Exercises

1. Enter various values of a and b in Columns A and B. Look for a pattern. What do you observe about the expressions?

2. Find the products of $(a - b)^2$, $(a - b)(a + b)$, and $(a + b)^2$. Do the results verify your conjecture?

Use the pattern you observed to factor each binomial.

3. $m^2 - t^2$

4. $x^2 - 4$

5. $y^2 - 16$

6. $q^2 - 121$

7. $r^2 - 169$

8. $b^2 - 1$

9. $4x^2 - 1$

10. $16t^2 - r^2$

11. $25a^2 - 81d^2$
8-9 Study Guide and Intervention

Perfect Squares

Factor Perfect Square Trinomials

<table>
<thead>
<tr>
<th>Perfect Square Trinomial</th>
<th>a trinomial of the form $a^2 + 2ab + b^2$ or $a^2 - 2ab + b^2$</th>
</tr>
</thead>
</table>

The patterns shown below can be used to factor perfect square trinomials.

<table>
<thead>
<tr>
<th>Squaring a Binomial</th>
<th>Factoring a Perfect Square Trinomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(a + 4)^2 = a^2 + 2(a)(4) + 4^2$</td>
<td>$a^2 + 8a + 16 = a^2 + 2(a)(4) + 4^2 = (a + 4)^2$</td>
</tr>
<tr>
<td>$(2x - 3)^2 = (2x)^2 - 2(2x)(3) + 3^2$</td>
<td>$4x^2 - 12x + 9 = (2x)^2 - 2(2x)(3) + 3^2 = (2x - 3)^2$</td>
</tr>
</tbody>
</table>

Example 1

Determine whether $16n^2 - 24n + 9$ is a perfect square trinomial. If so, factor it.

Since $16n^2 = (4n)(4n)$, the first term is a perfect square.

Since $9 = 3 \cdot 3$, the last term is a perfect square.

The middle term is equal to $2(4n)(3)$.

Therefore, $16n^2 - 24n + 9$ is a perfect square trinomial.

$16n^2 - 24n + 9 = (4n)^2 - 2(4n)(3) + 3^2 = (4n - 3)^2$

Example 2

Factor $16x^2 - 32x + 15$.

Since 15 is not a perfect square, use a different factoring pattern.

$16x^2 - 32x + 15$ Original trinomial

$= 16x^2 + mx + px + 15$ Write the pattern.

$= 16x^2 - 12x - 20x + 15$ $m = -12$ and $p = -20$

$= (16x^2 - 12x) - (20x - 15)$ Group terms.

$= 4x(4x - 3) - 5(4x - 3)$ Find the GCF.

$= (4x - 5)(4x - 3)$ Factor by grouping.

Therefore $16x^2 - 32x + 15 = (4x - 5)(4x - 3)$.

Exercises

Determine whether each trinomial is a perfect square trinomial. Write *yes* or *no*. If so, factor it.

1. $x^2 - 16x + 64$
2. $m^2 + 10m + 25$
3. $p^2 + 8p + 64$

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

4. $98x^2 - 200y^2$
5. $x^2 + 22x + 121$
6. $81 + 18j + j^2$

7. $25c^2 - 10c - 1$
8. $169 - 26r + r^2$
9. $7x^2 - 9x + 2$

10. $16m^2 + 48m + 36$
11. $16 - 25a^2$
12. $b^2 - 16b + 256$

13. $36x^2 - 12x + 1$
14. $16a^2 - 40ab + 25b^2$
15. $8m^3 - 64m$
Perfect Squares

Solve Equations with Perfect Squares Factoring and the Zero Product Property can be used to solve equations that involve repeated factors. The repeated factor gives just one solution to the equation. You may also be able to use the Square Root Property below to solve certain equations.

| Square Root Property | For any number \(n > 0 \), if \(x^2 = n \), then \(x = \pm \sqrt{n} \). |

Example

Solve each equation. Check your solutions.

a. \(x^2 - 6x + 9 = 0 \)

\[
\begin{align*}
 x^2 - 6x + 9 &= 0 & \text{Original equation} \\
 x^2 - 2(3x) + 3^2 &= 0 & \text{Recognize a perfect square trinomial.} \\
 (x - 3)(x - 3) &= 0 & \text{Factor the perfect square trinomial.} \\
 x - 3 &= 0 & \text{Set repeated factor equal to 0.} \\
 x &= 3 & \text{Solve.}
\end{align*}
\]

The solution set is \(\{3\} \). Since \(3^2 - 6(3) + 9 = 0 \), the solution checks.

b. \((a - 5)^2 = 64 \)

\[
\begin{align*}
 (a - 5)^2 &= 64 & \text{Original equation} \\
 a - 5 &= \pm \sqrt{64} & \text{Square Root Property} \\
 a - 5 &= \pm 8 & 64 = 8 \cdot 8 \\
 a &= 5 \pm 8 & \text{Add 5 to each side.} \\
 a &= 5 + 8 \quad \text{or} \quad a &= 5 - 8 & \text{Separate into 2 equations.} \\
 a &= 13 \quad \text{or} \quad a &= -3 & \text{Solve each equation.}
\end{align*}
\]

The solution set is \(\{-3, 13\} \). Since \((-3 - 5)^2 = 64 \) and \((13 - 5)^2 = 64 \), the solutions check.

Exercises

Solve each equation. Check the solutions.

1. \(x^2 + 4x + 4 = 0 \)
2. \(16n^2 + 16n + 4 = 0 \)
3. \(25d^2 - 10d + 1 = 0 \)
4. \(x^2 + 10x + 25 = 0 \)
5. \(9x^2 - 6x + 1 = 0 \)
6. \(x^2 + x + \frac{1}{4} = 0 \)
7. \(25k^2 + 20k + 4 = 0 \)
8. \(p^2 + 2p + 1 = 49 \)
9. \(x^2 + 4x + 4 = 64 \)
10. \(x^2 - 6x + 9 = 25 \)
11. \(a^2 + 8a + 16 = 1 \)
12. \(16y^2 + 8y + 1 = 0 \)
13. \((x + 3)^2 = 49 \)
14. \((y + 6)^2 = 1 \)
15. \((m - 7)^2 = 49 \)
16. \((2x + 1)^2 = 1 \)
17. \((4x + 3)^2 = 25 \)
18. \((3h - 2)^2 = 4 \)
19. \((x + 1)^2 = 7 \)
20. \((y - 3)^2 = 6 \)
21. \((m - 2)^2 = 5 \)
Skills Practice

Perfect Squares

Determine whether each trinomial is a perfect square trinomial. Write yes or no. If so, factor it.

1. \(m^2 - 6m + 9 \)
2. \(r^2 + 4r + 4 \)

3. \(g^2 - 14g + 49 \)
4. \(2w^2 - 4w + 9 \)

5. \(4d^2 - 4d + 1 \)
6. \(9n^2 + 30n + 25 \)

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

7. \(2x^2 - 72 \)
8. \(6b^2 + 11b + 3 \)

9. \(36t^2 - 24t + 4 \)
10. \(4h^2 - 56 \)

11. \(17a^2 - 24ab \)
12. \(q^2 - 14q + 36 \)

13. \(y^2 + 24y + 144 \)
14. \(6d^2 - 96 \)

Solve each equation. Check the solutions.

15. \(x^2 - 18x + 81 = 0 \)
16. \(4p^2 + 4p + 1 = 0 \)

17. \(9g^2 - 12g + 4 = 0 \)
18. \(y^2 - 16y + 64 = 81 \)

19. \(4n^2 - 17 = 19 \)
20. \(x^2 + 30x + 150 = -75 \)

21. \((k + 2)^2 = 16 \)
22. \((m - 4)^2 = 7 \)
8-9 Practice

Perfect Squares

Determine whether each trinomial is a perfect square trinomial. Write yes or no. If so, factor it.

1. \(m^2 + 16m + 64\)
2. \(9r^2 - 6r + 1\)
3. \(4y^2 - 20y + 25\)

4. \(16p^2 + 24p + 9\)
5. \(25b^2 - 4b + 16\)
6. \(49k^2 - 56k + 16\)

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

7. \(3p^2 - 147\)
8. \(6x^2 + 11x - 35\)
9. \(50q^2 - 60q + 18\)

10. \(6t^3 - 14t^2 - 12t\)
11. \(6d^2 - 18\)
12. \(30k^2 + 38k + 12\)

13. \(15b^2 - 24bf\)
14. \(12h^2 - 60h + 75\)
15. \(9n^2 - 30n - 25\)

16. \(7u^2 - 28m^2\)
17. \(w^4 - 8w^2 - 9\)
18. \(16a^2 + 72ad + 81d^2\)

Solve each equation. Check the solutions.

19. \(4k^2 - 28k = -49\)
20. \(50b^2 + 20b + 2 = 0\)
21. \(\left(\frac{1}{2}t - 1\right)^2 = 0\)

22. \(g^2 + \frac{2}{3}g + \frac{1}{9} = 0\)
23. \(p^2 - \frac{6}{5}p + \frac{9}{25} = 0\)
24. \(x^2 + 12x + 36 = 25\)

25. \(y^2 - 8y + 16 = 64\)
26. \((h + 9)^2 = 3\)
27. \(w^2 - 6w + 9 = 13\)

28. GEOMETRY The area of a circle is given by the formula \(A = \pi r^2\), where \(r\) is the radius. If increasing the radius of a circle by 1 inch gives the resulting circle an area of \(100\pi\) square inches, what is the radius of the original circle?

29. PICTURE FRAMING Mikaela placed a frame around a print that measures 10 inches by 10 inches. The area of just the frame itself is 69 square inches. What is the width of the frame?
1. **CONSTRUCTION** The area of Liberty Township's square playground is represented by the trinomial \(x^2 - 10x + 25 \). Write an expression using the variable \(x \) that represents the perimeter.

2. **AMUSEMENT PARKS** Funtown Downtown wants to build a vertical motion ride where the passengers are launched straight upward from ground level with an initial velocity of 96 feet per second. The ride car's height \(h \) in feet after \(t \) seconds is \(h = 96t - 16t^2 \). How many seconds after launch would the car reach 144 feet?

3. **BUSINESS** Saini Sprinkler Company installs irrigation systems. To track monthly costs \(C \) and revenues \(R \), they use the following functions, where \(x \) is the number of systems they install.

\[
R(x) = 8x^2 + 12x + 4 \\
C(x) = 7x^2 + 20x - 12
\]

The monthly profit can be found by subtracting cost from revenue.

\[
P(x) = R(x) - C(x)
\]

Find a function to project monthly profit and use it to find the break-even point where the profit is zero.

4. **GEOMETRY** Holly can make an open-topped box out of a square piece of cardboard by cutting 3-inch squares from the corners and folding up the sides to meet. The volume of the resulting box is \(V = 3x^2 - 36x + 108 \), where \(x \) is the original length and width of the cardboard.

- a. Factor the polynomial expression from the volume equation.

- b. What is the volume of the box if the original length of each side of the cardboard was 14 inches?

- c. What is the original side length of the cardboard when the volume of the box is 27 in\(^3\)?
Enrichment

Squaring Numbers: A Shortcut

A shortcut helps you to square a positive two-digit number ending in 5. The method is developed using the idea that a two-digit number may be expressed as $10t + u$. Suppose $u = 5$.

$$(10t + 5)^2 = (10t + 5)(10t + 5)$$

$$= 100t^2 + 50t + 50t + 25$$

$$= 100t^2 + 100t + 25$$

$$(10t + 5)^2 = 100(t + 1) + 25$$

In words, this formula says that the square of a two-digit number ending in 5 has $t(t + 1)$ in the hundreds place. Then 2 is the tens digit and 5 is the units digit.

Example

Using the formula for $(10t + 5)^2$, find 85^2.

$$85^2 = 100 \cdot 8 \cdot (8 + 1) + 25$$

$$= 7200 + 25$$

$$= 7225$$

Shortcut: First think $8 \cdot 9 = 72$. Then write 25.

Thus, to square a number, such as 85, you can write the product of the tens digit and the next consecutive integer $t + 1$. Then write 25.

Find each of the following using the shortcut.

1. 15^2
2. 25^2
3. 35^2
4. 45^2
5. 55^2
6. 65^2
7. What is the tens digit in the square of 95?
8. What are the first two digits in the square of 75?
9. Any three-digit number can be written as $100a + 10b + c$. Square this expression to show that if the last digit of a three-digit number is 5 then the last two digits of the square of the number are 2 and 5.
Student Recording Sheet

Use this recording sheet with pages 538–539 of the Student Edition.

Multiple Choice

Read each question. Then fill in the correct answer.

1. 4 4 4 4 4
2. 4 4 4 4 4
3. 4 4 4 4 4
4. 4 4 4 4 4
5. 4 4 4 4 4
6. 4 4 4 4 4
7. 4 4 4 4 4
8. 4 4 4 4 4
9. 4 4 4 4 4

Short Response/Gridded Response

Record your answer in the blank.

For gridded response questions, also enter your answer in the grid by writing each number or symbol in a box. Then fill in the corresponding circle for that number or symbol.

10. _________ (grid in) 10. 4 4 4 4 4 4 4 4 4 4 4 4 4
11. _________ 11. 4 4 4 4 4 4 4 4 4 4 4 4 4
12. _________ 12. 4 4 4 4 4 4 4 4 4 4 4 4 4
13. _________ 13. 4 4 4 4 4 4 4 4 4 4 4 4 4
14. _________ 14. 4 4 4 4 4 4 4 4 4 4 4 4 4
15. _________ 15. 4 4 4 4 4 4 4 4 4 4 4 4 4
16. _________ (grid in) 16. 4 4 4 4 4 4 4 4 4 4 4 4 4

Extended Response

Record your answers for Question 17 on the back of this paper.
Rubric for Scoring Extended Response

General Scoring Guidelines

- If a student gives only a correct numerical answer to a problem but does not show how he or she arrived at the answer, the student will be awarded only 1 credit. All extended-response questions require the student to show work.

- A fully correct answer for a multiple-part question requires correct responses for all parts of the question. For example, if a question has three parts, the correct response to one or two parts of the question that required work to be shown is not considered a fully correct response.

- Students who use trial and error to solve a problem must show their method. Merely showing that the answer checks or is correct is not considered a complete response for full credit.

Exercise 17 Rubric

<table>
<thead>
<tr>
<th>Score</th>
<th>Specific Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>In part a, the student correctly factors out a (t) term to rewrite the function as (h(t) = t(-16t + 200)). In part b, the function is solved for (h(0)) to get (t = 0, 12.5) seconds. The student shows understanding that this means the rocket is on the ground at take off and again 12.5 seconds later. In part c, the student finds the greatest height achieved by the rocket to be 625 feet after 6.25 seconds.</td>
</tr>
<tr>
<td>3</td>
<td>A generally correct solution, but may contain minor flaws in reasoning or computation.</td>
</tr>
<tr>
<td>2</td>
<td>A partially correct interpretation and/or solution to the problem.</td>
</tr>
<tr>
<td>1</td>
<td>A correct solution with no evidence or explanation.</td>
</tr>
<tr>
<td>0</td>
<td>An incorrect solution indicating no mathematical understanding of the concept or task, or no solution is given.</td>
</tr>
</tbody>
</table>
8 Chapter 8 Quiz 1
(Lessons 8-1 and 8-2)

Find the degree of each polynomial.
1. $5a - 2b^2 + 1$
2. $24xy - xy^3 + x^2$

Write each polynomial in standard form. Identify the leading coefficient.
3. $4x^2 - 3x^3 + 2x + 12$
4. $4x^2 - 7x + x - 15$

Find each sum or difference.
5. $(-2x^2 + x + 6) + (5x^2 - 4x - 2)$
6. $(5a + 9b) - (2a + 4b)$

7. **MULTIPLE CHOICE** Simplify $5c^2(c + 10) - 4c(2c^2 - 6c + 1)$.
 - A $-3c^3 + 74c^2 - 4c$
 - B $-3c^3 - 26c^2 + 4c$
 - C $-3c^3 - 6c + 11$
 - D $3c^3 - 9c + 11$

8. Solve $4t(t - 5) - 2t(3t + 2) + 108 = 3t(2t - 5) - t(8t - 3)$.

8 Chapter 8 Quiz 2
(Lesson 8-3, 8-4, and 8-5)

Find each product.
1. $(2x + 1)(x - 4)$
2. $(3b + 4)(2b^2 - b + 4)$
3. $(4m - 1)(m + 2)$
4. $(2x + 6y)(2x - 6y)$
5. $(a - 3b)(a + 3b)$
6. $(x + 7)^2$

Factor each polynomial completely.
7. $48a^2b^2 - 12ab$
8. $6x^2y - 21y^2w + 24xw$

Solve each equation. Check your solutions.
9. $(y + 4)(3y - 5) = 0$
10. $y^2 = -11y$

11. **MULTIPLE CHOICE** Which is a factor of $2x^2 - 12x - 14$?
 - A $x - 7$
 - B $2x - 2$
 - C $x + 7$
 - D $2x$
Chapter 8 Quiz 3
(Lessons 8-6 and 8-7)

Factor each polynomial, if possible. If the polynomial cannot be factored using integers, write prime.

1. \(a^2 - 10a + 21\)
2. \(x^2 + 2x - 15\)

3. \(2x^2 + 7x + 3\)
4. \(6x^2 + x + 2\)

5. MULTIPLE CHOICE Factor \(x^2 + x - 20\).
 A \((x + 4)(x + 5)\)
 B \((x + 4)(x - 5)\)
 C \((x - 4)(x + 5)\)
 D \((x - 4)(x - 5)\)

6. Solve each equation. Check your solutions.
 6. \(x^2 - 6x - 27 = 0\)
 7. \(y^2 + 23y = 24\)

8. \(3n^2 + 6 = 11n\)
9. \(10x^2 + 11x - 6 = 0\)

10. Find two consecutive odd integers whose product is 195.

Chapter 8 Quiz 4
(Lessons 8-8 and 8-9)

Factor each polynomial.

1. \(a^2 - 25\)
2. \(49x^2 - 64y^2\)
3. \(x^3 + 3x^2 - 4x - 12\)
4. \(a^2 + 14a + 49\)
5. \(9z^2 - 6z + 1\)
6. \(8m^3 - 24m^2 + 18m\)

Solve each equation by factoring. Check your solutions.

7. \(16x^2 = 81\)
8. \(\frac{4}{9}p^2 - 25 = 0\)
9. \(16r^2 - 8r + 1 = 0\)
10. \((x - 5)^2 = 8\)

11. MULTIPLE CHOICE A corner is cut off a right triangle whose legs each measure 3 inches. The cut is \(x\) inches from the vertex and parallel to the opposite leg. Write an equation in terms of \(x\) that represents the area \(A\) of the figure after the corner is removed.
 A \(9 + 3x\)
 B \(\frac{3}{2}x - \frac{9}{2}\)
 C \(\frac{9}{2} - \frac{1}{2}x^2\)
 D \(\frac{9}{2} + \frac{3}{2}x\)
Chapter 8 Mid-Chapter Test
(Lessons 8-1 through 8-5)

Part I Write the letter for the correct answer in the blank at the right of each question.

1. Find \((x^3 - x + 1) - (3x - 1)\).
 - A \(3x^3 - x\)
 - B \(x^3 - 4x\)
 - C \(x^3 - 4x + 2\)
 - D \(x^3 + 2x - 2\)
 Answer: 1. _____

2. Simplify \(3a(a^2 - 3a + 4) - 4(3a^3 - 2a^2)\).
 - F \(-12a^3 + 11a^2 - 9a + 12\)
 - G \(-15a^3 - 17a^2 + 12a\)
 - H \(-9a^3 - a^2 + 12a\)
 - J \(-3a^3 + 5a^2 + 4a\)
 Answer: 2. _____

3. Find \((2a - 3b)^2\).
 - A \(4a^2 - 9b^2\)
 - B \(2a^2 - 6ab + 3b^2\)
 - C \(4a^2 - 6ab - 9b^2\)
 - D \(4a^2 - 12ab + 9b^2\)
 Answer: 3. _____

4. Find \((2x + 11)(3x - 7)\).
 - F \(6x^2 + 19x^2 - 77\)
 - G \(5x^2 - 47x + 4\)
 - H \(5x^2 + 47x - 4\)
 - J \(6x^2 - 19x + 77\)
 Answer: 4. _____

5. Factor \(15g^3h^2 - 35g^2h + 40g\).
 - A \(5g(3g^3h^2 - 7gh + 8)\)
 - B \(15g^2h(3g - 3g + 4)\)
 - C \(5(3g^3h^2 - 7g^2h + 8g)\)
 - D \(g(15g^2h^2 - 35gh + 40)\)
 Answer: 5. _____

6. Solve \(4x^2 - 3x = 0\).
 - F \(-\frac{3}{4}, 0\)
 - G \(0, 0\)
 - H \(\frac{3}{4}, 0\)
 - J \(\frac{4}{3}, 0\)
 Answer: 6. _____

7. Factor \(75b^2c^3 + 60bc^6 - 35b^2c^4\) completely.
 - A \(5bc(15b + 12b - 7bc)\)
 - B \(5bc^2(15b + 12c^3 - 7bc)\)
 - C \(15bc(5bc + 4c^5 - 7bc^3)\)
 - D \(bc(75b + 60c^3 - 35bc)\)
 Answer: 7. _____

Part II

8. Factor the monomial \(-70a^3b^2c\) completely.
 Answer: 8. __________

9. FALL Diego drops his camera as he climbs a hill and it falls to the ground 256 feet below. The distance \(d\) that the camera falls in \(t\) seconds is given by the equation \(d = 16t^2\). How long does it take the camera to hit the ground?
 Answer: 9. __________

Factor each polynomial.

10. \(36xy^2 - 48x^2y\)
11. \(t^2 - 16t + 48\)
12. \(2xy - x + 4y - 2\)

Simplify each expression.

13. \((3g^3 - 2g^2 - 2) - (4g^2 - g - 3)\)
14. \((3y - 4)(2y + 5)\)
15. \((4m - 5n)^2\)
Write the letter of the term that best matches each statement or each expression.

1. \(x^2 + 8x + 16\)
 - a. difference of two squares

2. \(x^2 + 4x + 7 = 0\)
 - b. factoring by grouping

3. \(x^2 - 4\)
 - c. perfect square trinomial

4. \(x^2 + 49\)
 - d. prime polynomial

5. \((x - 2)(x + 3) = 0\)
 - e. quadratic equation

6. factoring technique often used if a polynomial has 4 or more terms
 - f. quadratic expression

7. an expression in one variable with a degree of 2
 - g. Zero Product Property

Define each term in your own words.

8. factoring

9. FOIL method
Chapter 8 Test, Form 1

Write the letter for the correct answer in the blank at the right of each question.

1. Find \((2a - 5) - (3a + 1)\).
 - A \(5a + 6\)
 - B \(a - 4\)
 - C \(-a - 6\)
 - D \(-a - 4\)

2. Find \(3m^2(2m^2 - m)\).
 - F \(5m^4 - 3m^3\)
 - G \(6m^4 - 3m^2\)
 - H \(5m^4 - 3m\)
 - J \(6m^4 - 3m^3\)

3. Simplify \(3(x^2 + 2x) - x(x - 1)\).
 - A \(4x^2 + x\)
 - B \(2x^2 + 7x\)
 - C \(2x^2 + 3x\)
 - D \(2x^2 + 5x\)

4. Find \((2n - 3)(n + 4)\).
 - F \(3n + 1\)
 - G \(2n^2 + 5n - 12\)
 - H \(2n^2 - 12\)
 - J \(2n^2 + 11n + 1\)

5. Factor \(xy + 3x - 2x^2\) completely.
 - A \(x(y + 3 - 2x)\)
 - B \((2x - 3y)(y + x)\)
 - C \(x(y + 3) + 2x\)
 - D \(y(x + 3x - 2x^2)\)

6. Solve \(b(b + 17) = 0\).
 - F \(\{0, \frac{1}{17}\}\)
 - G \(-17, 0\)
 - H \(\{0, 17\}\)
 - J \(\{17\}\)

7. Factor \(m^2 + 13m + 42\).
 - A \((m + 1)(m + 13)\)
 - B \((m + 6)(m + 7)\)
 - C \((m + 10)(m + 3)\)
 - D \((m - 6)(m - 7)\)

8. Find \((3y - 1)^2\).
 - F \(6y^2 - 6y + 1\)
 - G \(9y^2 - 6y + 1\)
 - H \(9y^2 - 3y + 1\)
 - J \(9y^2 - 6y - 1\)

9. The area of a rectangle is \((y^2 - 8y + 15)\) square inches. Which expression represents a possible length for the rectangle?
 - A \((y + 5)\)
 - B \((y - 2)\)
 - C \((y - 15)\)
 - D \((y - 3)\)

10. Solve \(3(2n - 6) = -4(n - 3)\).
 - F \(3\)
 - G \(\frac{3}{5}\)
 - H \(6\)
 - J \(1\frac{4}{5}\)

11. Solve \(2x^2 - 5x - 3 = 0\).
 - A \(\left\{-\frac{1}{2}, 3\right\}\)
 - B \(\left\{\frac{1}{2}, -3\right\}\)
 - C \(\left\{\frac{1}{2}, 3\right\}\)
 - D \(\left\{-\frac{1}{2}, -3\right\}\)
12. Factor $4m^2 - 25$.
 \[F \ (2m + 5)(2m + 5) \quad H \ (2m - 5)(2m - 5) \]
 \[G \ (2m + 5)(2m - 5) \quad J \ \text{prime} \]

13. A square can be changed into a rectangle by increasing the length of the square by 5 units and increasing the width by 3 units. Which expression represents the area of the rectangle in square units?
 \[A \ x^2 + 8x + 15 \quad B \ x^2 + 15 \quad C \ 2x + 8 \quad D \ 2x + 15 \]

14. Solve $64y^2 = 25$ by factoring.
 \[F \ \left\{ \frac{8}{5} \right\} \quad G \ \left\{ \frac{5}{8} \right\} \quad H \ \left\{ -\frac{8}{5}, \frac{8}{5} \right\} \quad J \ \left\{ -\frac{5}{8}, \frac{5}{8} \right\} \]

15. Which of the following polynomials shows the terms of $x^2 + 5x^3 - 4 - 2x$ arranged in standard form?
 \[A \ 5x^3 - 2x + x^2 - 4 \quad C \ 5x^3 - 4 - 2x + x^2 \]
 \[B \ -4 - 2x + x^2 + 5x^3 \quad D \ 5x^3 + x^2 - 2x - 4 \]

16. The area of a circle is given by $(\pi k^2 - 12\pi k + 36\pi)$ square inches. What is the radius of the circle?
 \[F \ k + 3 \quad G \ k + 4 \quad H \ k - 6 \quad J \ k - 12 \]

17. Find $(2x - 5)(2x + 5)$.
 \[A \ 4x \quad B \ 4x^2 - 25 \quad C \ 4x^2 - 20x - 25 \quad D \ 4x^2 + 25 \]

 \[F \ {-3} \quad G \ {3} \quad H \ {-3, 3} \quad J \ {-9} \]

19. Find two different integers such that the square of the integer is 12 less than seven times the integer.
 \[A \ 3 \text{ and } 4 \quad B \ -3 \text{ and } 4 \quad C \ -4 \text{ and } 3 \quad D \ -3 \text{ and } -4 \]

20. GEOMETRY The length of a rectangle is 5 centimeters more than the width. The area of the rectangle is 36 square centimeters. What is the length?
 \[A = 36 \text{ cm}^2 \]
 \[x \text{ cm} \quad x + 5 \text{ cm} \]
 \[F \ 4 \text{ cm} \quad G \ 9 \text{ cm} \quad H \ 14 \text{ cm} \quad J \ 26 \text{ cm} \]

Bonus The sum of the squares of two consecutive odd integers is 74. Find the two integers.
 \[B: \]
Write the letter for the correct answer in the blank at the right of each question.

1. Write $4x^3 - 6x + 2x^5 + 3$ in standard form.
 - A $3 - 6x + 4x^3 + 2x^5$
 - B $4x^3 + 3 + 2x^5 - 6x$
 - C $2x^5 + 4x^3 - 6x + 3$
 - D $-6x + 4x^3 + 3 + 2x^5$

2. Find $(9t^2 + 4t - 6) - (t^2 - 2t + 4)$.
 - F $8t^2 + 6t - 10$
 - G $8t^2 + 2t - 2$
 - H $9t^2 + 6t - 2$
 - J $9t^2 + 6t - 10$

3. Simplify $2a^2(5a - 6) - 5a(a^2 - 3a + 4) - 7(a - 5)$.
 - A $5a^3 + 3a^2 - 27a + 35$
 - B $5a^3 - 10a - 7$
 - C $5a^3 - 27a^2 + 13a - 35$
 - D none of these

4. Factor $24x^2y - 66xy^2 + 54x^2y^2$ completely.
 - F $2xy(12x - 33y + 27xy)$
 - G $6x^2y^2(4y - 11x + 9)$
 - H $(4x^2 + 6y)(6x - 9y^2)$
 - J $6xy(4x - 11y + 9xy)$

5. Each side of a square x units long is decreased by 9 units. Which expression represents the area of the new square in square units?
 - A $x^2 - 81$
 - B $x^2 - 18x + 18$
 - C $x^2 - 18x + 81$
 - D $2x - 18$

6. Solve $(3w + 4)(2w - 7) = 0$.
 - F $\left\{ -\frac{3}{4} \right\}$
 - G $\left\{ -\frac{2}{7} \right\}$
 - H $\left\{ -\frac{4}{3} \right\}$
 - J $\left\{ -\frac{7}{2} \right\}$

7. Factor $x^2 - 10x + 9$.
 - A $(x - 1)(x - 9)$
 - B $(x + 1)(x - 9)$
 - C $(x - 1)(x + 9)$
 - D $(x + 1)(x - 9)$

8. Find $(3y - 4)(2y^2 + y - 1)$.
 - F $6y^3 - 5y^2 - 7y - 4$
 - G $6y^3 - 7y^2 - 7y + 4$
 - H $6y^3 - 5y^2 - 7y + 4$
 - J $6y^3 - 5y^2 + 7y + 4$

9. Solve $y^2 = 13y - 42$.
 - A $\{-6, -7\}$
 - B $\{6, 7\}$
 - C $\{-6, 7\}$
 - D $\{6, -7\}$

10. Find $(4a^2 + b)^2$.
 - F $16a^4 + b^2$
 - G $16a^4 + 8a^2b + b^2$
 - H $8a^4 + b^2$
 - J $4a^4 + 8a^2b + b^2$

11. Factor $5x^2 - 13x + 6$.
 - A $(x + 3)(5x - 2)$
 - B $(x - 2)(5x - 3)$
 - C $(x + 2)(5x + 3)$
 - D $(x - 3)(5x + 2)$
12. Solve \(7x^2 - 20x = 3\).
 \[\text{F} \left\{ -\frac{1}{7}, 3 \right\} \quad \text{G} \left\{ \frac{1}{7}, -3 \right\} \quad \text{H} \left\{ -\frac{1}{7}, -3 \right\} \quad \text{J} \left\{ \frac{1}{7}, 3 \right\} \]

13. Factor \(121r^2 - 64t^2\).
 \[\text{A} (11r + 8t)(11r - 8t) \quad \text{B} (11r - 8t)(11r - 8t) \quad \text{C} (11r + 8t)(11r + 8t) \quad \text{D} \text{ prime} \]

14. Solve \(6(n - 11) = 12 + 4(2n - 3)\).
 \[\text{F} -11 \quad \text{G} 11 \quad \text{H} -33 \quad \text{J} 33 \]

15. Solve \(5x^2 - 3x = (7x^2 + 5x) - (2x^2 + 16)\).
 \[\text{A} 2 \quad \text{B} -2 \quad \text{C} 8 \quad \text{D} -8 \]

16. Which binomial is a factor of \(6x^2 + 48x + 96\)?
 \[\text{F} x + 4 \quad \text{G} 3x + 8 \quad \text{H} 3x + 16 \quad \text{J} 6x + 16 \]

17. If the area of a square is multiplied by nine, the area becomes 16 square inches. Find the length \(x\) of a side of the square.
 \[\text{A} \frac{16}{9} \text{ in.} \quad \text{B} \frac{4}{3} \text{ in.} \quad \text{C} \frac{3}{4} \text{ in.} \quad \text{D} \frac{8}{3} \text{ in.} \]

18. **SOCCER** Julian kicked a soccer ball into the air with an initial upward velocity of 40 feet per second. The height \(h\) in feet of the ball above the ground can be modeled by \(h = -16t^2 + 40t\), where \(t\) is the time in seconds after Julian kicked the ball. Find the time it takes the ball to reach 25 feet above the ground.
 \[\text{F} 2 \frac{1}{2} \text{ s} \quad \text{G} \frac{15}{16} \text{ s} \quad \text{H} 1 \frac{1}{3} \text{ s} \quad \text{J} 1 \frac{1}{4} \text{ s} \]

19. The product of two consecutive odd integers is 143. Find their sum.
 \[\text{A} -20 \text{ or } 20 \quad \text{B} -28 \text{ or } 28 \quad \text{C} -26 \text{ or } 26 \quad \text{D} -24 \text{ or } 24 \]

20. The length of a rectangle is twice the width. The area is 72 square centimeters. What is the length?
 \[\text{F} 48 \text{ cm} \quad \text{G} 24 \text{ cm} \quad \text{H} 12 \text{ cm} \quad \text{J} 6 \text{ cm} \]

Bonus Find the value of \(c\) that will make \(9x^2 + 30x + c\) a perfect square trinomial.
 \[\text{B: } \]
Write the letter for the correct answer in the blank at the right of each question.

1. Write \(x^2 + 4x - 3x^3 + 6 \) in standard form.
 - A \(-3x^3 + x^2 + 4x + 6 \)
 - B \(x^2 - 3x^3 + 4x + 6 \)
 - C \(6 + 4x - 3x^3 + x^2 \)
 - D \(6 - 3x^3 + 4x + x^2 \)
 1. ___

2. Find \((3c^2 - 8c + 5) + (c^2 - 8c - 6)\).
 - F \(3c^2 - 1 \)
 - G \(4c^2 + 11 \)
 - H \(4c^2 - 16c - 1 \)
 - J \(2c^2 - 16c - 1 \)
 2. ___

3. Simplify \(3b^2(4b + 7) - 2b(b^2 - 5b - 3) - 6(b - 2)\).
 - A \(14b^3 + 11b^2 - 12b - 12 \)
 - B \(14b^3 + 31b^2 + 12b + 12 \)
 - C \(41b^2 + 12 \)
 - D \(10b^3 + 31b^2 + 12 \)
 3. ___

4. Factor \(88a^2b^2 + 24a^2b - 32ab^2\) completely.
 - F \(8a^2b^2(11 + 3b - 4a) \)
 - G \(2ab(44ab + 12a - 16b) \)
 - H \(8ab(11ab + 3a - 4b) \)
 - J \((11a^2 + 8b)(8a - 4b^2) \)
 4. ___

5. Find \((3y + 4z)(3y - 4z)\).
 - A \(9y^2 - 16z^2 \)
 - B \(9y^2 + 16z^2 \)
 - C \(9y^2 - 24yz - 16z^2 \)
 - D \(9y^2 - 24yz + 16z^2 \)
 5. ___

6. Solve \((3m - 2)(9m + 5) = 0\).
 - F \(\left\{ \frac{3}{2}, \frac{9}{5} \right\} \)
 - G \(\left\{ -\frac{5}{9}, \frac{2}{3} \right\} \)
 - H \(\left\{ -\frac{9}{5}, \frac{3}{2} \right\} \)
 - J \(\left\{ -\frac{2}{3}, -\frac{5}{9} \right\} \)
 6. ___

7. Factor \(x^2 - 11x + 18\).
 - A \((x - 2)(x - 9) \)
 - B \((x + 2)(x - 9) \)
 - C \((x - 2)(x + 9) \)
 - D \((x + 2)(x + 9) \)
 7. ___

8. Find \((-2r^2 + n)^2\).
 - F \(4r^4 + n^2 \)
 - G \(-4r^4 + n^2 \)
 - H \(4r^4 - 4r^2n + n^2 \)
 - J \(-4r^4 - 4r^2n + n^2 \)
 8. ___

9. Solve \(y^2 = 15y - 56\).
 - A \(\{7, 8\} \)
 - B \(\{-7, -8\} \)
 - C \(\{-7, 8\} \)
 - D \(\{7, -8\} \)
 9. ___

10. Find \((3x + 2)(4x^2 - 2x - 7)\).
 - F \(12x^3 + 2x^2 - 25x - 14 \)
 - G \(7x^3 + 9x^2 - 25x - 14 \)
 - H \(12x^3 + 14x^2 + 25x + 14 \)
 - J \(7x^3 + 7x^2 - 4x - 5 \)
 10. ___

11. Factor \(7x^2 - 16x + 4\).
 - A \((x - 3)(7x + 5) \)
 - B \((x - 4)(7x + 1) \)
 - C \((x + 2)(7x - 4) \)
 - D \((x - 2)(7x - 2) \)
 11. ___
12. Solve $5x^2 + 13x = 6$.
 \[F \{ 3, -\frac{2}{5} \} \quad G \{ 3, \frac{2}{5} \} \quad H \{ -3, \frac{2}{5} \} \quad J \{ -3, -\frac{2}{5} \} \]

13. Factor $196w^2 - 81z^2$.
 \[A (14w + 9z)(14w + 9z) \quad C (14w + 9z)(14w - 9z) \]
 \[B (14w - 9z)(14w - 9z) \quad D \text{ prime} \]

14. Solve $-4(5 - 2n) = 8(-6 - 5n)$.
 \[F -\frac{1}{9} \quad G -\frac{28}{3} \quad H -\frac{7}{8} \quad J -\frac{7}{12} \]

15. Solve $x(x + 3) - 2 = 2 + x(x + 1)$.
 \[A 2 \quad B -2 \quad C 1 \quad D 0 \]

16. Which binomial is a factor of $80y^2 - 120y + 45$?
 \[F 4y - 3 \quad G 8y - 9 \quad H 16y - 9 \quad J 8y - 15 \]

17. If the area of a square is multiplied by sixteen, the area becomes 25 square inches. Find the length x of a side of the square.
 \[A \frac{25}{16} \text{ in.} \quad B \frac{5}{4} \text{ in.} \quad C \frac{4}{5} \text{ in.} \quad D \frac{5}{8} \text{ in.} \]

18. GOLF Sisika hit a golf ball into the air with an initial upward velocity of 56 feet per second. The height h in feet of the ball above the ground can be modeled by $h = -16t^2 + 56t$, where t is the time in seconds after Sisika hit the ball. Find the time it takes the ball to reach 49 feet above the ground.
 \[F 3\frac{1}{2} \text{ s} \quad G \frac{7}{16} \text{ s} \quad H 1\frac{3}{5} \text{ s} \quad J 1\frac{3}{4} \text{ s} \]

19. The product of two consecutive even integers is 224. Find their sum.
 \[A -30 \text{ or } 30 \quad B -34 \text{ or } 34 \quad C -26 \text{ or } 26 \quad D -32 \text{ or } 32 \]

20. The length of a rectangle is 5 times the width. The area is 125 square centimeters. What is the length?
 \[F 5 \text{ cm} \quad G 25 \text{ cm} \quad H 10 \text{ cm} \quad J 30 \text{ cm} \]

Bonus Factor $2n^4 - 10n^2 - 72$ completely.
Find each sum or difference.

1. \((5n^2 - 2ny + 3y^2) - (9n^2 - 8ny - 10y^2)\)

2. \((11m^2 - 2mt + 8t^2) + (8m^2 + 4mt - 2t^2)\)

Find each product.

3. \(5hk^2(2h^2k - hk^3 + 4h^3k^2)\)

4. \((4x^2 + 2y^2)(2x^2 - y^2)\)

5. \((5c - 4)^2\)

Factor each polynomial.

6. \(35a^3be^2 - 45a^2b^2c\)

7. \(3xy - 4x + 6y - 8\)

8. \(t^2 - 11t + 24\)

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

9. \(10y^2 - 31y + 15\)

10. \(8n^2 - 36n + 40\)

11. \(2x^4 - 18x^2\)

12. \(9a^2 + 42a - 49\)
Solve each equation. Check the solutions.

13. \(-6(3n - 2) = 4(-3 - 2n)\)

14. \(8n + 11 = 4 + 5(2n - 1)\)

15. \((3n + 2)(n - 2) = 0\)

16. \(16y^2 - 8y = 0\)

17. \(8n^2 + 4 = 12n\)

18. \(4y^2 + 16y + 7 = 0\)

19. \(49w^2 - 25 = 0\)

20. **GARDENING** The length of a rectangular garden is 8 feet longer than its width. The garden is surrounded by a sidewalk that is 4 feet wide and has an area of 320 square feet. Find the dimensions of the garden.

21. A triangle has an area of 77 square inches. Find the length of the base if the base is 3 inches greater than the height.

22. The volume of a box is 192 cubic inches. The height is 4 inches. The width is 2 inches more than the length. Find the missing dimensions.

23. **BASEBALL** Tonisha hit a baseball into the air with an initial upward velocity of 48 feet per second. The height \(h\) in feet of the ball above the ground can be modeled by \(h = -16t^2 + 48t + 2\), where \(t\) is the time in seconds after Tonisha hit the baseball. Find the time it takes the ball to reach 38 feet above the ground.

24. The area of a rectangular room is 238 square feet. The width is 3 feet less than the length. Find the dimensions of the room.

25. One number is 5 times another number. The product of the two numbers is 245. Find the two numbers.

Bonus Factor \(v^2x^2 - 9x^2 + v^2n^2 - 9n^2\) completely.

B:

Chapter 8 Test, Form 2C (continued)
Find each sum or difference.

1. \((7m^2 + 3m - 4) - (3m^2 + 9m - 5)\)

2. \((4y^2 + 3y - 7) + (4y^2 - 7y - 2)\)

Find each product.

3. \(3x^2y(2x^2y - 5xy^2 + 8y^3x^2)\)

4. \((3r^2 + 5t^2)(3r^2 - 5t^2)\)

5. \((5y + 6)^2\)

Factor each polynomial.

6. \(10x^2yz - 22x^3y^2z\)

7. \(2xy - 4x + 3y - 6\)

8. \(m^2 + 12m - 28\)

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

9. \(5t^2 + 17t - 12\)

10. \(6p^2 - 20p + 16\)

11. \(3x^5 - 75x^3\)

12. \(25x^2 + 70x - 49\)
Solve each equation. Check the solutions.

13. \(5x + 8 = 3 + 2(3x - 4)\)

14. \(-5(2n - 3) = 7(3 - n)\)

15. \((x + 5)(4x - 3) = 0\)

16. \(12b^2 - 8b = 0\)

17. \(9n^2 + 6n = 3\)

18. \(4b^2 - 8b - 5 = 0\)

19. \(64x^2 - 1 = 0\)

20. GARDENING The length of a rectangular garden is 5 feet longer than its width. The garden is surrounded by a 2-foot-wide sidewalk. The sidewalk has an area of 76 square feet. Find the dimensions of the garden.

21. A triangle has an area of 88 square inches. Find the length of the base if the base is 5 inches more than the height.

22. The volume of a box is 231 cubic inches. The width is 7 inches. The length is 8 inches more than the height. Find the missing dimensions.

23. VOLLEYBALL Lanu hit a volleyball into the air with an initial upward velocity of 24 feet per second. The height \(h\) in feet of the ball above the ground can be modeled by \(h = -16t^2 + 24t + 3\), where \(t\) is the time in seconds after Lanu hit the volleyball. Find the time it takes the ball to reach 12 feet above the ground.

24. The area of a rectangular room is 104 square feet. The length of the room is 5 feet longer than the width. Find the dimensions of the room.

25. One number is 7 times another number. The product of the two numbers is 252. Find the two numbers.

Bonus Find the value of \(c\) that will make \(25x^2 - 40x + c\) a perfect square trinomial.

B: __________
Find each sum or difference.
1. \((8w^2 + 4w - 2) + (2w^2 - w + 6)\)
2. \((7u^2x - 3ux + 4ux^2) - (4ux - 3u^2x - 2ux^2)\)
3. GEOMETRY The measures of two sides of a triangle are given on the triangle at the right. If the perimeter of the triangle is \(6x^2 + 8y\), find the measure of the third side.
4. Simplify \(5n^2(n - 6) - 2n(3n^2 + n - 6) + 7(n^2 - 3)\).

Factor each polynomial.
5. \(12x^4y^2z - 24x^2y^3z + 16x^2y^3z^3\)
6. \(4x^2y^2 - 9y^2 - 45 + 20x^2\)
7. \(-x^2 + 5x + 24\)

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.
8. \(10x^2 + 29x - 21\)
9. \(3p^2 - 14p + 12\)
10. \(3x^3 - 24x^2y + 48xy^2\)
11. \(3x^4 - 73x^2 - 50\)
12. If \(a^2 + b^2 = 11\) and \(ab = 3\), find the value of \((a - b)^2\).
13. Find all values of \(k\) so that \(t^2 + kt - 8\) can be factored using integers.
14. Find an expression for \(c\) that will make \(9x^2 + 12xy + c\) a perfect square trinomial.
Find each product.

15. \((2y - 7)(4y + 4)\)

16. \(\left(\frac{2}{3}m - 1\right)\left(\frac{1}{2}m - 2\right)\)

Solve each equation.

17. \(6x^2 = 22x\)

18. \(x^2 + \frac{8x}{3} = -\frac{7}{9}\)

19. \(a^2 - \frac{11}{2}a + \frac{121}{16} = 0\)

20. Solve \((2x - 3)^2 - 25 = 0\) by factoring. Check your solution.

21. The volume of a box is 96 cubic inches. The length is 8 inches more than the height. The width is 2 inches less than the height. Find the dimensions of the box.

22. A rectangular rug 9 feet by 12 feet is placed in the center of a rectangular room covering three fifths of the floor. The rug leaves the same width of floor uncovered on each side. Find the dimensions of the room.

23. One integer is 3 more than another integer. The difference in their squares is 6 more than 5 times the greater integer. Find the integers.

24. **TENNIS** Josefina hit a tennis ball into the air with an initial upward velocity of 16 feet per second. The height \(h\) in feet of the ball above the ground can be modeled by \(h = -16t^2 + 16t + 3\), where \(t\) is the time in seconds after Josefina hit the tennis ball. Find the time it takes the ball to reach 7 feet above the ground.

25. **FIBERS** The basic breaking strength \(b\) in pounds for a natural fiber line is determined by the formula \(900c^2 = b\), where \(c\) is the circumference of the line in inches. What circumference of natural line would have 100 pounds of breaking strength?

Bonus Solve the equation, and check your solutions.

\[9t^3 + 15t^2 + t - 6 = (t + 3)(t - 2) - 3t^3\]

B: \(\)
Demonstrate your knowledge by giving a clear, concise solution to each problem. Be sure to include all relevant drawings and justify your answers. You may show your solution in more than one way or investigate beyond the requirements of the problem.

1. Theo wants to build a rectangular deck on the front of his family’s café, and he wants the deck to have an area of \(A \) square feet. If the length of the deck is \(b \) feet longer than the width, then the equation \(A = x(x + b) \) gives the area of the deck in terms of the width \(x \).
 a. Explain the differences and similarities between \(A = x(x + b) \) and \(x^2 + bx - A \).
 b. What must be true about \(-A\) and \(b\) so that \(x^2 + bx - A \) is factorable?
 c. Choose values for \(A \) and \(b \) so that \(x^2 + bx - A \) is factorable. Then, substitute your values into \(x^2 + bx - A \) and factor the resulting polynomial.
 d. Substitute the values you chose for \(A \) and \(b \) in part c into \(A = x(x + b) \), and determine the area of the deck corresponding to these values and the dimensions of the deck.

2. A ball thrown horizontally has an initial upward velocity of 0 feet per second. The height \(h \), in feet, of the ball above the ground is modeled by the equation \(h = c - 16t^2 \) where \(c \) is the height at which the ball is thrown and \(t \) is the time in seconds after the ball is thrown.
 a. Compare possible values of \(c \) and \(h \), and determine whether \(h \) will ever be greater than \(c \). Explain your reasoning.
 b. Choose a value for \(c \) that is a perfect square, and determine how long it takes for the ball to hit the ground using your value for \(c \).
 c. Can a ball thrown horizontally at a height of 9 feet stay above the ground for more than 1 second? Explain your reasoning.

3. One way to factor a trinomial such as \(x^2 - 2x - 3 \) is to assign a value such as 10 to \(x \) and evaluate the expression.
 \[
 x^2 - 2x - 3 = 10^2 - 2(10) - 3 \\
 = 100 - 20 - 3 \\
 = 77
 \]
 A factorization of 77 is \(7 \times 11 \). Since \(x = 10 \), \(7 = x - 3 \) and \(11 = x + 1 \). Multiply to see if \((x - 3)(x + 1) = x^2 - 2x - 3 \).
 a. Try the method above to factor \(x^2 - 8x + 15 \). Show your work and explain each step.
 b. Try the method above to factor \(2x^2 - 13x - 24 \). \((\text{Hint: The factors will be of the form } (2x + a)(x - b). \) Show your work and explain each step.
 c. Try the method above to factor \(x^2 - 2x - 8 \). Why is it difficult to find the correct factors for this trinomial using the method above?
 d. Evaluate the expression in part c for \(x = 5 \). Then use the method above to find the factors. Explain each step. Remember in finding your factors that \(x = 5 \).
1. Simplify $9a^2 + 7a + 4a^2 + 2a$. (Lesson 1-3)
 A $22a^3$ B $13a^2 + 9a$ C $36a^2 + 14a$ D $16a^2 + 6a$ 1. 2. 3. 4.

2. Which is an equation for the line that passes through $(-2, 7)$ and $(3, -8)$? (Lesson 4-2)
 F $y = -3x + 1$ H $y = -\frac{1}{3}x + 8$ G $y = -\frac{1}{3}x + \frac{19}{3}$ J $y = -3x + 13$ 2. 3. 4. 5.

3. Solve $24 + x < 18$. (Lesson 5-1)
 A $\{x | x < 42\}$ C $\{x | x < \frac{3}{4}\}$ B $\{x | x > 6\}$ D $\{x | x < -6\}$ 3. 4. 5. 6.

4. Half the perimeter of a garden is 18 feet. The garden is 8 feet longer than it is wide. How wide is the garden? (Lesson 6-3)
 F 5 ft G 40 ft H 36 ft J 8 ft 4. 5. 6. 7.

5. Find $(3.2 \times 10^5) \div (8.0 \times 10^{-4})$. (Lesson 7-4)
 A 4×10^0 C 4×10^1 B 4×10^8 D 2.56×10^{10} 5. 6. 7. 8.

6. Find $(3g^2 + g + 2k) + (8k - 5g^2 + 7g)$. (Lesson 8-1)
 F $11g^2 - 6g + 9k$ H $8g^2 - 8g - 6k$ G $-6g^2 + 9g + 11k$ J $-2g^2 + 6g + 10k$ 6. 7. 8. 9.

7. Find $(2x - 1)(3x + 2)$. (Lesson 8-3)
 A $5x^2 + 4x - 2$ C $6x^2 - 3x + 2$ B $6x^2 + x - 2$ D $5x^2 + x + 1$ 7. 8. 9. 10.

8. Solve $8x^2 - 6x = 0$. (Lesson 8-5)
 F $\left\{0, \frac{3}{4}\right\}$ G $\left\{0, \frac{1}{3}\right\}$ H $\{6, 8\}$ J $\left\{0, \frac{3}{4}, 2\right\}$ 8. 9. 10. 11.

9. Solve $p^2 - 10p = -21$. (Lesson 8-6)
 A $\{-3, 10\}$ B $\{4, -7\}$ C $\{5\}$ D $\{3, 7\}$ 9. 10. 11. 12.

10. Each football game begins with a kickoff. The formula $h = -16t^2 + 64t$, where h is the height in feet of the football at t seconds, can be used to model a kickoff that is in the air for 4 seconds. At what times will the football be 48 feet above the ground? (Lesson 8-7)
 F 1 s H 1 s, 3 s G 2 s J 1.5 s, 2.5 s 10. 11. 12. 13.
11. Solve $2(v + 3) - 26 = 7(1 - v)$. (Lesson 1-2)
 A 10 B 3 C 9 D $\frac{10}{3}$ 11. © © © ©

12. Find the total price. (Lesson 2-7)
 calculator: $90
 tax: 8\%
 F $90.08
 G $98.00
 H $97.20
 J $90.80 12. © © © ©

13. Solve $x - 2y = 6$ if the domain is $\{-2, 0, 2\}$. (Lesson 3-1)
 A $\{(-2, -4), (0, -3), (2, -2)\}$
 B $\{(-2, -2), (3, 0), (2, 4)\}$
 C $\{(-2, 5), (0, 3), (2, 5)\}$
 D $\{(2, -2), (3, 0), (4, 2)\}$ 13. © © © ©

14. A line passes through $(-1, 3)$ and $(1, -3)$. Which equation does not represent the line? (Lesson 4-2)
 F $(y - 3) = -3(x + 1)$
 G $3x - y = 0$
 H $(y + 3) = -3(x - 1)$
 J $y = -3x$ 14. © © © ©

15. Solve $\frac{n}{7} < -6$. (Lesson 5-2)
 A $n > 42$
 B $n < -42$
 C $n < 42$
 D $n > -42$ 15. © © © ©

16. Solve $8 \leq 2h + 6 \leq 22$. (Lesson 5-4)
 F $\{h \mid 1 \leq h \leq 8\}$
 G $\{h \mid 7 \leq h \leq 14\}$
 H $\{h \mid 4 \leq h \leq 11\}$
 J $\{h \mid 0 \leq h \leq 14\}$ 16. © © © ©

17. Solve $|2u + 7| = 13$. (Lesson 5-3)
 A $\{-10, 3\}$
 B $\{-10, -3\}$
 C $\{3, 10\}$
 D $\{-3, 10\}$ 17. © © © ©

18. Factor $2x^2 + 15x + 18$. (Lesson 8-8)
 F $(2x - 3)(x + 6)$
 G $(2x + 2)(x + 9)$
 H $(2x - 3)(x - 6)$
 J $(2x + 3)(x + 6)$ 18. © © © ©

19. Solve $3(x - 2) + 4x = 3(2x - 1)$. (Lesson 8-2)

20. Solve $9x^2 + 16 = 24x$. (Lesson 8-9)
21. Graph \(y = 2x - 3 \). (Lesson 3-1)

\[\text{Graph on grid} \]

22. Determine whether the system has no solution, one solution, or infinitely many solutions. (Lesson 6-1)
\[\begin{align*}
3x - 4y &= -12 \\
x + 4 &= \frac{4}{3}y
\end{align*} \]

\[22. \text{_________} \]

23. Use elimination to solve the system of equations.
\[\begin{align*}
6x - 3y &= 11 \\
6x + 3y &= 17
\end{align*} \] (Lesson 6-3)

\[23. \text{_________} \]

24. Simplify \((-2x^2y^3)^4\). (Lesson 7-1)

\[24. \text{_________} \]

25. Simplify \(5(2y^2 + 3y - 2) + 8y(3y^2 + 4y - 2)\). (Lesson 8-2)

\[25. \text{_________} \]

26. Simplify \((2x + 1)(x^2 - 3x - 4)\). (Lesson 8-3)

\[26. \text{_________} \]

27. Factor \(12a^2b^2 - 16a^2b^3\). (Lesson 8-5)

\[27. \text{_________} \]

28. Solve \(5x^2 - 6x + 1 = 0\). (Lesson 8-7)

\[28. \text{_________} \]

29. Factor \(4x^2 - 49y^2\). (Lesson 8-8)

\[29. \text{_________} \]

30. The sum of two numbers is 18. The difference between three times the lesser number and the greater number is 10. (Lesson 2-1)

a. Define variables and formulate a system of equations from this situation.

b. What is the greater number?
8 Anticipation Guide

Quadratic Expressions and Equations

Step 1 Before you begin Chapter 8

- Read each statement.
- Decide whether you Agree (A) or Disagree (D) with the statement.
- Write A or D in the first column OR if you are not sure whether you agree or disagree, write NS (Not Sure).

<table>
<thead>
<tr>
<th>STEP 1 A, D, or NS</th>
<th>Statement</th>
<th>STEP 2 A or D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. When multiplying two powers that have the same base, multiply the exponents.</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>2. ((a^3)^2) is equivalent to (a^5).</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>3. To divide two powers that have the same base, subtract the exponents.</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>4. (\sqrt{2}) is the same as (\frac{2^{\frac{1}{2}}}{2}).</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>5. A polynomial may contain one or more monomials.</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>6. The degree of the polynomial (3x^3y^2 - 5y^2 + 8x^6) is 3 because the greatest exponent is 3.</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>7. The greatest common factor (GCF) of two or more monomials is the product of their unique factors when each monomial is written in factored form.</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>8. Any two numbers that have a greatest common factor of 1 are said to be relatively prime.</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>9. If the product of any two factors is 0, then at least one of the factors must equal 0.</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>10. A quadratic trinomial has a degree of 4.</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>11. To solve an equation such as (x^2 = 8 + 2x), take the square root of both sides.</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>12. The polynomial (3x^2 - r - 2) can not be factored because the coefficient of (x^2) is not 1.</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>13. The polynomial (t^2 + 16) is not factorable.</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>14. The numbers 16, 64, and 121 are perfect squares.</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

Step 2 After you complete Chapter 8

- Reread each statement and complete the last column by entering an A or a D.
- Did any of your opinions about the statements change from the first column?
- For those statements that you mark with a D, use a piece of paper to write an example of why you disagree.
Skills Practice

Find each sum or difference.

1. \((2x + 3y) + (4x + 9y)\)
 \(6x + 12y\)

2. \((6s + 5t) + (4t + 8a)\)
 \(14s + 9t\)

3. \((5a + 9b) - (2a + 4b)\)
 \(3a + 5b\)

4. \((1.1m - 7n) - (2m + 6n)\)
 \(9m - 13n\)

5. \((m^2 - m) + (2m + m^2)\)
 \(2m^2 + m\)

6. \((x^2 - 3x) - (2x^2 + 5x)\)
 \(-x^2 - 8x\)

7. \((d^2 - d + 5) - (2d + 5)\)
 \(d^2 - 3d\)

8. \((2h^2 - 5h) + (7h - 3h^2)\)
 \(-h^2 + 2h\)

9. \((3f + g - 2) + (-2f + 3)\)
 \(3f + g + 1\)

10. \((4k^3 + 2k + 9) + (4k^3 - 5k)\)
 \(10k^3 - 3k + 9\)

Determine whether each expression is a polynomial. If it is a polynomial, find the degree and determine whether it is a monomial, binomial, or trinomial.

11. \(5nt + t^5\)
 yes; 2; binomial

12. \(4by + 2b - by\)
 yes; 2; binomial

13. \(-32\)
 yes; 0; monomial

14. \(3x^7\)
 yes; 1; monomial

15. \(5x^3 - 3x^4\)
 no

16. \(2x^2 + 8c + 9 - 3\)
 yes; 2; trinomial

Write each polynomial in standard form. Identify the leading coefficient.

17. \(3x + 1 + 2x^5\)
 \(2x^5 + 3x + 1; 2\)

18. \(5x - 6 + 3x^2\)
 \(3x^2 + 5x - 6; 3\)

19. \(9x^2 + 2 + x^2 + x\)
 \(x^2 + 9x + x + 2; 1\)

20. \(-3 + 3x - x^2 + 4x\)
 \(3x^2 - x^2 + 4x - 3; 3\)

21. \(2x^3 + 3x^2 + 2x - x\)
 \(3x^3 + x^2 - x + 27; 3\)

22. \(25 - x^3 + x\)
 \(-x^3 + x + 25; -1\)

23. \(-x - 3x^2 + 4 + 5x^3\)
 \(5x^3 - 3x^2 + x + 4; 5\)

24. \(x^3 + 64 - x + 7x^2\)
 \(7x^4 + x^2 - x + 64; 7\)
8-1 Practice

Adding and Subtracting Polynomials

Find each sum or difference.

1. \((4y + 5) + (\text{\(7y - 1\)})\)
 - \(-3y + 4\)
2. \((-x^2 + 3x) - (5x + 2x^2)\)
 - \(-3x^2 - 2x\)
3. \((4k^3 + 8k + 2) - (2k + 3)\)
 - \(4k^3 + 6k\)
4. \((2m^2 + 6m) + (m^2 - 5m + 7)\)
 - \(3m^2 + m + 7\)
5. \((5a^2 + 6a + 2) - (7a - 7a + 5)\)
 - \(-2a^3 + 13a - 3\)
6. \((-4p^2 + p + 9) - (3p^2 + 7p - 1)\)
 - \(-3p^2 + 117p + 10\)
7. \((x^3 - 3x + 1) - (x^2 + 7 - 12x)\)
 - \(9x - 6\)
8. \((2a^3 + a) - (4a - 1) - (5 + 5a^2 - 3a)\)
 - \(-9a^2 + 3y - 12\)

Determine whether each expression is a polynomial. If it is a polynomial, find the degree and determine whether it is a monomial, binomial, trinomial, or not a polynomial.

11. \(7a^2b + 3b - a^2\)
 - yes; 3; binomial
12. \(\frac{1}{2}y^3 + y^2 - 9\)
 - yes; 6; trinomial
13. \(6r^3/4\)
 - yes; 6; monomial
14. \(x^3 + 3x^2 - 2x - 7\)
 - not a polynomial

Write each polynomial in standard form. Identify the leading coefficient.

15. \(8x^2 - 15 + 5x^5\)
 - \(5x^5 + 8x^2 - 15\)
 - \(x^5\)
16. \(10x - 7 + x^4 + 4x^2\)
 - \(x^4 + 4x^2 + 10x - 7\)
 - \(x^4\)
17. \(13x^2 - 5 + 6x - x\)
 - \(6x^3 + 13x^2 - x - 5\)
 - \(6x^3\)
18. \(4x + 2x^2 - 6x + 2\)
 - \(2x^3 + 6x^2 + 4x + 2\)
 - \(2x^3\)
19. \(m^3 + 70m^2 + 1500m - 10,800\)

Business The polynomial \(s^2 - 70s^2 + 1500s - 10,800\) models the profit a company makes on selling an item at a price \(s\). A second item sold at the same price brings in a profit of \(80s^2 + 450s - 5000\). Write a polynomial that expresses the total profit from the sale of both items. \(2s^2 - 100s^2 + 1590s - 15,800\)

20. \(s\) The measures of two sides of a triangle are given. If \(P\) is the perimeter, and \(P = 10x + 2y\), find the measure of the third side. \(2x + 2y\)

8-1 Word Problem Practice

Adding and Subtracting Polynomials

1. **Prime Day** Mei is trying to list as many prime numbers as possible for her math class. She finds that the polynomial expression \(n^2 - n + 41\) can be used to generate some, but not all, prime numbers. What is the degree of Mei’s polynomial?
 - \(n^2 - n + 41\)
2. **Phone Calls** A local telephone company charges a standard monthly service fee of $19.95 plus $0.05 per minute of long-distance use. Write a polynomial to express the monthly cost of the phone plan if \(x\) minutes of long-distance time are used per month. What is the degree of the polynomial?
 - \$0.05x + $19.95; 1
3. **Fireworks** Two bottle rockets are launched straight up into the air. The height, in feet, of each rocket at \(t\) seconds after launch is given by the polynomial equations below. Write an equation to show how much higher Rocket A is than Rocket B. Rocket A: \(D_A = -16t^2 + 122t\) Rocket B: \(D_B = -16t^2 + 84t\)
 - \(D_A - D_B = 38t\)
4. **Envelopes** An office supply company produces yellow document envelopes. The envelopes come in a variety of sizes, but the length is always 4 centimeters more than double the width. Write a polynomial expression to give the perimeter of any of the envelopes.
 - \(6x + 8\)

Industry Two identical right cylindrical steel drums containing oil need to be covered with a fire-resistant sealant. In order to determine how much sealant to purchase, George must find the surface area of the two drums. The surface area including the top and bottom bases is given by the following formula.

\[
S = 2\pi rh + 2\pi r^2
\]

- a. Write a polynomial to represent the total surface area of the two drums. \(4\pi rh + 4\pi r^2\)
- b. Find the total surface area if the height of each drum is 2 meters and the radius of each is 0.5 meter. \(15.7\ m^2\)
- c. The fire-resistant sealant must be applied while they are stacked vertically in groups of three. If \(h\) is the height of each drum and \(r\) is the radius, write a polynomial to represent the exposed surface area. \(6\pi rh + \pi r^2\)
8-1 Enrichment

Circular Areas and Volumes

<table>
<thead>
<tr>
<th>Area of Circle</th>
<th>Volume of Cylinder</th>
<th>Volume of Cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = \pi r^2)</td>
<td>(V = \pi r^2 h)</td>
<td>(V = \frac{1}{3} \pi r^2 h)</td>
</tr>
</tbody>
</table>

Write an algebraic expression for each shaded area. (Recall that the diameter of a circle is twice its radius.)

1. \(\pi x^2 - \pi \left(\frac{x}{2} \right)^2 = \frac{3x^2 \pi}{4} \)
2. \(\frac{x}{2} (y^2 + 2xy) \)
3. \(\frac{19}{2} \pi x^3 \)
4. \(\frac{x}{2} \left[13x^2 + (4a + 9b)x \right] \)
5. \(\frac{5}{3} \pi x^3 \)

Each figure has a cylindrical hole with a radius of 2 inches and a height of 5 inches. Find each volume.

6. \(\frac{175\pi x^2}{4} - 20\pi \text{ in}^3 \)
7. \(3\pi x^2 - 20\pi \text{ in}^3 \)

8-1 Graphing Calculator Activity

Second Degree Polynomial Functions

Many real world problems can be modeled using polynomial functions. The TABLE function can be used to evaluate a function for multiple values.

Example: An object is dropped from the top of a 179-foot cliff to the water below. The height of the object above the water can be modeled by \(h(t) = -16t^2 + 179 \) where \(t \) is time in seconds.

a. Determine the height of the object after 0.5 second, 1 second, 1.5 seconds, and 2 seconds. Enter the function into \(Y_1 \). Use \(\text{2nd} \) \(\text{TblSet} \) to set up the calculator to display values of \(t \) in 0.5 second intervals. Display the table and record the results. Examine the table. When \(x = 0.5, y = 175 \). This means that \(h(0.5) = 175 \), or that after 0.5 second, the object is 175 feet above the water. Thus, \(h(1) = 161 \) feet, \(h(1.5) = 143 \) feet, and \(h(2) = 115 \) feet.

b. After how many seconds does the object hit the water? Round to the nearest hundredth. Scroll through the table. Notice that the \(y \)-values change from \(5 \) and \(3.5 \). Examine this interval more closely by resetting the table using \(\text{TblStart} = 3 \) and \(\Delta \text{Tbl} = 0.1 \). Look for the change in sign. Further examine the interval from \(x = 3.3 \) to \(x = 3.4 \) using \(\text{TblStart} = 3.3 \) and \(\Delta \text{Tbl} = 0.01 \). The \(y \)-value closest to zero occurs when \(x = 3.34 \). Thus, the object hits the water after about 3.34 seconds.

Exercises

1. An object is dropped from the top of a building that is 412 feet high. The distance, in feet, above the ground at \(x \) seconds is given by \(P(x) = -16x^2 + 412 \). a. After how many seconds will the object be 100 feet above the ground? b. How many seconds will it take the object to reach the ground?

2. A bungee jumper free falls from the Royal Gorge suspension bridge over the Arkansas River, 1053 feet above the river. The height \(h \) of the bungee jumper above the river, in feet, after \(t \) seconds can be represented by \(h = -16t^2 + 1053 \). Two seconds after the first bungee jumper falls, another person jumps down with an initial velocity of 80 feet per second. The position of the second jumper can be represented by the equation \(h = -16t^2 - 20 - 80t - 2t + 1053 \). a. If the bungee cords are designed to stretch just enough so that the jumpers touch the water before springing back up, which jumper will touch the water first? How long does it take each jumper to touch the water? b. Does the second jumper catch up to the first jumper? If so, how far are they above the river at this point and how long does it take each jumper to reach this point?
8-2 Study Guide and Intervention

Multiplying a Polynomial by a Monomial

Polynomial Multiplied by Monomial: The Distributive Property can be used to multiply a polynomial by a monomial. You can multiply horizontally or vertically. Sometimes multiplying results in like terms. The products can be simplified by combining like terms.

Example 1 Find \(-3x^2(4x^2 + 6x - 8)\).

Horizontal Method

\[-3x^2(4x^2) + (-3x^2)(6x) + (-3x^2)(-8)\]

\[-12x^4 + (-18x^3) - (-24x^2)\]

Vertical Method

\[4x^2 + 6x - 8\]

\[x\]

\[-3x^2\]

\[-12x^4 - 18x^3 + 24x^2\]

The product is \(-12x^4 - 18x^3 + 24x^2\).

Example 2 Simplify \(-2(4x^2 + 5x) - x(x^2 + 6x)\).

\[-2(4x^2 + 5x) - x(x^2 + 6x)\]

\[-8x^2 - 10x - x^3 - 6x^2\]

\[-x^3 - 14x^2 - 10x\]

Exercises

Find each product.

1. \(5x^2 + x^3\)
2. \(2x(4x^2 + 3x + 2)\)
3. \(-2y(2y + 4x^2)\)
4. \(-2g^3(7g + 2g)\)
5. \(3x(x^2 + x^3)\)
6. \(-4x(2x - 4 + 3)\)
7. \(-4ax(10 + 3x)\)
8. \(3y(-4x - 6x^3 + 2y)\)
9. \(2x^3y(3x^2 + 2y + 5x)\)
10. \(x(3x - 4) - 5x\)
11. \(-x(2x^2 - 4x) - 6x^2\)
12. \(6ax(2a - 4) + 2b(-4a + 5b)\)
13. \(4r(2r^2 - 2r + 3) + 6r(4r^2 - 2r + 8)\)
14. \(4n(3n^2 + n - 4) - n(3 - n)\)
15. \(25b^3 + 25b + 35b^3 + 9b - 18\)
16. \(-2r(4r^2 - 3r + 1) - x(3x^2 + 2x - 1)\)

Simplify each expression.

17. \(2r(4r^2 - 2r - 3r^2 + 2x + 4) + 2r(x - 1)\)
18. \(28x^2 - 6x + 12\)

Chapter 8
8-2 **Skills Practice**
Multiplying a Polynomial by a Monomial

Find each product.

1. \((4x^2 + 3)\)
 \(4a^2 + 3a\)
2. \((-11c^4 + 4c)\)
 \(-11c^4 + 4c\)
3. \((2x^2 - 5)\)
 \(2y^2 - 8y\)
4. \((-3n^2 + 2n)\)
 \(-3n^2 + 2n\)
5. \((-3x^3 + x + 4)\)
 \(-7c^5 + 3c^4\)
6. \((15x^2 - 3x^2 + 12x)\)
 \(15c^4 - 14c^3 + 7c^4\)
7. \((-4x^2 - 9x - 2y)\)
 \(-4b + 6b^2 + 8b^3\)
8. \((-3x^3 - 2n^2 + 3n + 4)\)
 \(6n^4 - 9n^3 - 12n^2\)

Simplify each expression.

13. \((3x^3 + 2) + 5w\)
 \(3w^3 + 7w\)
14. \((5f - 3) - 2f\)
 \(5f^2 - 5f\)
15. \((-p^2 + 2 - 8) - 5p\)
 \(-p^2 + 3p\)
16. \((y^2 - 4y + 5) - 6y^2\)
 \(-4y^2 - y^2\)
17. \((2x^3c + 4) - 3x^6\)
 \(20a^3 - 7a\)
18. \((5a^2 - 4) + 9\)
 \(4t^3 - 2(2t^3 + 3t^2 + 5)\)
19. \((2b^2 - 5b - 3) - 2b^3 - 7b - 4\)
 \(-22b^2 + 2b + 8\)
20. \((3m^3 + 6m + 3 - 3m^2 + 4m + 1)\)
 \(6m^2 + 6m - 3\)

Solve each equation.

21. \((3a + 5) - 2a = 4\)
 \(7\)
22. \((4x^2 + 2) - 8 = 4(x + 3) + 4\)
 \(22\)
23. \((y + 1) + 2 = 4(y + 2) - 6\)
 \(-5\)
24. \((4b + 6) = 2(b + 5) + 2\)
 \(-6\)
25. \((6m - 2) + 14 = 3(m + 2) - 10\)
 \(-2\)
26. \((3c + 5) - 2 = 2(c + 6) + 2\)
 \(1\)

8-2 **Practice**
Multiplying a Polynomial by a Monomial

Find each product.

1. \((3 + k)(4 + 2)\)
 \(16p^2 + 24pq\)
2. \((5 + k)(2k)\)
 \(6r^2 - 9rt\)
3. \((-m^2 + 8m - m + 3)\)
 \(-2m^3 + \frac{1}{3}m^2 + \frac{7}{4}m\)
4. \((-2 - 2x + 3x)\)
 \(-4x^2 + 3w^2 + 19w\)
5. \((-2 - 5)(2x^2 + 9t - 3)\)
 \(-10 - 2(3m^2 + 5m + 6) + 3m(2m^2 + 3m + 1)\)
6. \((2x^2) - 63t + 15\)
 \(9n^2 - 7m - 12\)
7. \((-3(7g - 2) + 3(g^2 + 2g + 1) - 3g - 5g + 3)\)
 \(-3g^2 + 3g + 3\)

Solve each equation.

12. \((2 - 1) + 3 = 3(3 + 2)\)
 \(8\)
13. \((-2 + 2) + 5 = 2(2a - 2) - 3\)
14. \((-b^2 + 3) - 5 = 2(6n + 8) + 1 + \frac{1}{2}\)
 \(12\)
15. \((-b^2 + 3) = 4b + 3 - 9 - \frac{1}{4}\)
16. \((t + 4) - 1 = (t + 2) + 2\)
 \(\frac{3}{2}\)
17. \((u - 5) + 5u = a + u - a\)
 \(-4\)
18. **NUMBER THEORY** Let \(x\) be an integer. What is the product of twice the integer added to three times the next consecutive integer? \(5x + 3\)
19. **INVESTMENTS** Kent invested $5000 in a retirement plan. He allocated \(x\) dollars of the money to a bond account that earns 4% interest per year and the rest to a traditional account that earns 5% interest per year.
 a. Write an expression that represents the amount of money invested in the traditional account. \(5000 - x\)
 b. Write a polynomial model in simplest form for the total amount of money \(T\) Kent has invested after one year. (Hint: Each account has \(A + 14\) dollars, where \(A\) is the original amount in the account and \(I\) is its interest rate.) \(T = 5245\)
 c. If Kent put $500 in the bond account, how much money does he have in his retirement plan after one year? $5245

Answers (Lesson 8-2)
Chapter 8

8-2 Word Problem Practice

Multiplying a Polynomial by a Monomial

1. NUMBER THEORY The sum of the first \(n \) whole numbers is given by the expression \(\frac{1}{2}(n^2 + n) \). Expand the equation by multiplying, then find the sum of the first 12 whole numbers.

\[
n^2 + n = 78
\]

2. COLLEGE Troy’s boss gave him \$700 to start his college savings account. Troy’s boss also gives him \$40 each month to add to the account. Troy’s mother gives him \$50 each month, but has been doing so for 4 fewer months than Troy’s boss. Write a simplified expression for the amount of money Troy has received from his boss and mother after \(m \) months.

\[
90m + 500
\]

3. LANDMARKS A circle of 50 flags surrounds the Washington Monument. Suppose a new sidewalk 12 feet wide is installed just around the outside of the circle of flags. The outside circumference of the sidewalk is 1.10 times the circumference of the circle of flags.

\[
\text{Circle of flags}
\]

Write an equation that equates the outside circumference of the sidewalk to 1.10 times the circumference of the circle of flags. Solve the equation for the radius of the circle of flags. Recall that circumference of a circle is \(2\pi r \).

\[
1.10(2\pi r) = 2\pi(r + 12); r = 120
\]

4. MARKET Sophia went to the farmers’ market to purchase some vegetables. She bought peppers and potatoes. The peppers were \$0.39 each and the potatoes were \$0.29 each. She spent \$3.88 on vegetables, and bought 4 more potatoes than peppers. If \(x \) = the number of peppers, write and solve an equation to find out how many of each vegetable Sophia bought.

\[
3.88 = x(0.39) + (x + 4)(0.29);
\]

4 peppers and 8 potatoes

5. GEOMETRY Some monuments are constructed as rectangular pyramids. The volume of a pyramid can be found by multiplying the area of its base \(B \) by one third of its height. The area of the rectangular base of a monument in a local park is given by the polynomial equation \(B = x^2 - 4x - 12 \).

\[
V = \frac{10}{3}x^2 - 40x - 40
\]

a. Write a polynomial equation to represent \(V \), the volume of a rectangular pyramid if its height is 10 centimeters.

b. Find the volume of the pyramid if \(x = 12 \).

\[
280 \text{ cm}^3
\]

8-2 Enrichment

Figurate Numbers

The numbers below are called pentagonal numbers. They are the numbers of dots or disks that can be arranged as pentagons.

\[
\begin{array}{c}
1 \\
5 \\
12 \\
22
\end{array}
\]

1. Find the product \(\frac{1}{2}n(3n - 1) \). \(\frac{3n^3}{2} - \frac{n}{2} \)

2. Evaluate the product in Exercise 1 for values of \(n \) from 1 through 4. 1, 5, 12, 22

3. What do you notice? They are the first four pentagonal numbers.

4. Find the next six pentagonal numbers. 35, 51, 70, 92, 117, 145

5. Find the product \(\frac{1}{2}n(n + 1) \). \(\frac{n^3}{2} + \frac{n}{2} \)

6. Evaluate the product in Exercise 5 for values of \(n \) from 1 through 5. On another sheet of paper, make drawings to show why these numbers are called the triangular numbers. 1, 3, 6, 10, 15; See students' drawings.

7. Find the product \(n(2n - 1) \). \(2n^2 - n \)

8. Evaluate the product in Exercise 7 for values of \(n \) from 1 through 5. Draw these hexagonal numbers. 1, 6, 15, 28, 45; See students' drawings.

9. Find the first 5 square numbers. Also, write the general expression for any square number. 1, 4, 9, 16, 25; \(n^2 \)

The numbers you have explored above are called the plane figurate numbers because they can be arranged to make geometric figures. You can also create solid figurate numbers.

10. If you pile 10 oranges into a pyramid with a triangle as a base, you get one of the tetrahedral numbers. How many layers are there in the pyramid? How many oranges are there in the bottom layer? 3 layers; 6

11. Evaluate the expression \(\frac{1}{4}n^3 + \frac{1}{2}n^2 + \frac{1}{4}n \) for values of \(n \) from 1 through 5 to find the first five tetrahedral numbers. 1, 4, 10, 20, 35

Copyright © Glencoe/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
8-3 Study Guide and Intervention
Multiplying Polynomials

Multiply Binomials To multiply two binomials, you can apply the Distributive Property twice. A useful way to keep track of terms in the product is to use the FOIL method as illustrated in Example 2.

Example 1 Find \((x + 3)(x - 4)\).

Horizontal Method
\[
(x + 3)(x - 4) = x(x - 4) + 3(x - 4)
\]
\[
= x^2 - 4x + 3x - 12
\]
\[
= x^2 - x - 12
\]
Vertical Method
\[
\begin{array}{c}
\text{Top} \\
\underline{x + 3} \\
\text{Bottom} \\
\hline
x - 4 \\
\underline{-4x} \\
\underline{3x} \\
\underline{x^2 - x - 12}
\end{array}
\]

The product is \(x^2 - x - 12\).

Example 2 Find \((x - 2)(x + 5)\) using the FOIL method.

\[
(x - 2)(x + 5) = (x)(x) + (x)(5) + (-2)(x) + (-2)(5)
\]
\[
= x^2 + 5x - 2x - 10
\]
\[
= x^2 + 3x - 10
\]

The product is \(x^2 + 3x - 10\).

Exercises
Find each product.

1. \((x + 3)(x + 2)\)
 \[x^2 + 5x + 6\]

2. \((x - 4)(x + 1)\)
 \[x^2 - 3x - 4\]

3. \((x - 6)(x - 2)\)
 \[x^2 - 8x + 12\]

4. \((p - 4)(p + 2)\)
 \[p^2 - 2p - 8\]

5. \((y + 5)(y - 2)\)
 \[y^2 + 7y + 10\]

6. \((2x - 1)(x + 5)\)
 \[2x^2 + 9x - 5\]

7. \((3n - 4)(3n + 4)\)
 \[9n^2 - 4\]

8. \((8m - 3)(8m + 2)\)
 \[64m^2 - 4\]

9. \((k + 4)(5k - 1)\)
 \[5k^2 + 19k - 4\]

10. \((3x + 1)(3x - 3)\)
 \[12x^2 + 13x + 3\]

11. \((x - 8)(x - 3)\)
 \[-3x^2 + 25x - 8\]

12. \((5r + 4)(2r - 6)\)
 \[10r^2 - 22r - 24\]

13. \((5m - 3)(4m - 2n)\)
 \[20m^2 - 22mn + 6n^2\]

14. \((a - 3b)(2a - 5b)\)
 \[2a^2 - 11ab + 15b^2\]

15. \((6x - 8)(5x + 5)\)
 \[64x^2 - 25\]

16. \((3a - 4)(2a + 5)\)
 \[14a^2 - 35a + 50\]

17. \((4m - 3)(5m - 5)\)
 \[20m^2 - 35m + 15\]

18. \((3g - 4)(7g + 4)\)
 \[49g^2 + 16\]

Answers

Chapter 8

18

Glencoe Algebra 1

19

Glencoe Algebra 1
8-3 Skills Practice

Multiplying Polynomials

Find each product.

1. \((m + 4m + 1)\)
 \(m^2 + 4m + 1\)

2. \((a + 2a + 2)\)
 \(a^2 + 4a + 4\)

3. \((b + 3b + 4)\)
 \(b^2 + 7b + 12\)

4. \((t + 4t + 3)\)
 \(t^2 + 12\)

5. \((r + 2)(r - 2)\)
 \(r^2 - 4\)

6. \((a - 5)(a + 1)\)
 \(a^2 - 4a - 5\)

7. \((3c + 1)(c - 2)\)
 \(3c^2 - 5c - 2\)

8. \((2x - 6)(x + 3)\)
 \(2x^2 - 18\)

9. \((6d - 1)(5d - 4)\)
 \(5d^2 - 34d + 24\)

10. \((2x + 5)(x - 1)\)
 \(2x^2 - 3x - 5\)

11. \((3a - 7)(a + 3)\)
 \(3a^2 + 2a - 21\)

12. \((q + 5q)(q - 1)\)
 \(5q^2 + 24q - 5\)

13. \((3b + 3)(3b - 2)\)
 \(9b^2 + 3b - 6\)

14. \((2m + 2)(m - 3)\)
 \(6m^2 - 6\)

15. \((4c + 1)(2c + 1)\)
 \(8c^2 + 6c + 1\)

16. \((5a - 2)(2a - 3)\)
 \(10a^2 - 19a + 6\)

17. \((4h - 2)(4h + 1)\)
 \(16h^2 - 12h + 2\)

18. \((x - 3)(2x - y)\)
 \(2x^2 - 3xy + y^2\)

19. \((a + 3a)(a^2 + 3a - 6)\)
 \(w^2 + 7w^3 + 6w - 24\)

20. \((a + 1)(a^2 + 2a + 4)\)
 \(a^3 + 3a^2 + 6a + 4\)

21. \((k + 4)(k^2 + 3k - 6)\)
 \(k^3 + 7k^2 + 6k - 24\)

22. \((m + 3)(m^2 + 3m + 5)\)
 \(m^3 + 6m^2 + 14m + 15\)

GEOMETRY Write an expression to represent the area of each figure.

21. \(4x^2 - 2x - 2\) units²

22. \(4x^3 + 3x - 1\) units³

23. NUMBER THEORY Let \(x\) be an even integer. What is the product of the next two consecutive even integers? \(x^2 + 6x + 8\)

24. GEOMETRY The volume of a rectangular pyramid is one third the product of the area of its base and its height. Find an expression for the volume of a rectangular pyramid whose base has an area of \(3x^2 + 12x + 9\) square feet and whose height is \(x + 3\) feet.
 \(x^3 + 7x^2 + 15x + 9\) ft³
Chapter 8

8-3 Word Problem Practice

Multiplying Polynomials

1. **THEATER** The Loft Theater has a center seating section with 3x + 8 rows and 4x – 1 seats in each row. Write an expression for the total number of seats in the center section. **12x^2 + 29x – 8**

2. **CRAFTS** Suppose a quilt made up of squares has a length-to-width ratio of 5 to 4. The length of the quilt is 5x inches. The quilt can be made slightly larger by adding a border of 1-inch squares all the way around the perimeter of the quilt. Write a polynomial expression for the area of the larger quilt. **20x^2 + 18x + 4**

3. **SERVICE** A folded United States flag is sometimes presented to individuals in recognition of outstanding service to the country. The flag is presented folded in a triangle. Often the recipient purchases a case designed to display the folded flag to protect it from wear. One such display case has dimensions (in inches) shown below. Write a polynomial expression that represents the area of wall space covered by the display case.

 \[
 \frac{x^3}{2} + \frac{5}{4}x - \frac{25}{4}
 \]

 Source: American Flag Store

4. **MATH FUN** Think of a whole number. Subtract 2. Write down this number. Take the original number and add 2. Write down this number. Find the product of the numbers you wrote down. Subtract the square of the original number. The result is always –4. Use polynomials to show how this number trick works.

 \[
 (x - 2)(x + 2) - x^2 = -4
 \]

 \[
 x^2 - 2x + 2x - 4 - x^2 = -4
 \]

 \[= -4\]

5. **ART** The museum where Julia works plans to have a large wall mural replica of Vincent van Gogh’s *The Starry Night* painted in its lobby. First, Julia wants to paint a large frame around where the mural will be. The mural's length will be 5 feet longer than its width, and the frame will be 2 feet wide on all sides. Julia has only enough paint to cover 100 square feet of wall surface. How large can the mural be?

 \[
 w(w + 5)
 \]

 Painted frame

 - Write an expression for the area of the mural.
 - Write an expression for the area of the frame.
 - Write and solve an equation to find how large the mural can be.

 \[
 (w + 9)(w + 4) - (w + 5)w = 100
 \]

 8 ft by 13 ft

8-3 Enrichment

Pascal’s Triangle

This arrangement of numbers is called Pascal’s Triangle. It was first published in 1665, but was known hundreds of years earlier.

<table>
<thead>
<tr>
<th>Row</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Multiply to find the expanded form of each product.

4. \((a + b)^3 \) \(a^3 + 3a^2b + 3ab^2 + b^3\)

5. \((a + b)^4 \) \(a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4\)

Now compare the coefficients of the three products in Exercises 4-6 with Pascal’s Triangle.

7. Describe the relationship between the expanded form of \((a + b)^n\) and Pascal’s Triangle. The coefficients of the expanded form are found in row \(n + 1\) of Pascal’s Triangle.

8. Use Pascal’s Triangle to write the expanded form of \((a + b)^5\).

 \(a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5\)
8-3 Spreadsheet Activity

Multiplying Polynomials

Example A box is made by cutting a square with sides x inches long from each corner of a piece of cardboard and folding up the sides. If the piece of cardboard is 15 inches long and 12 inches wide, what integer value of x allows you to make the box with the greatest volume? What is the volume?

Step 1 The finished box will be x inches high, $12 - 2x$ inches wide, and $15 - 2x$ inches long. The volume of the box is $(12 - 2x)(15 - 2x)$ cubic inches.

Step 2 Use Column A of the spreadsheet for the value of x. Enter the formulas for the width, length, and volume in Columns B, C, and D.

<table>
<thead>
<tr>
<th>Height (cm)</th>
<th>Width (cm)</th>
<th>Length (cm)</th>
<th>Volume (cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>12</td>
<td>130</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>11</td>
<td>176</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>9</td>
<td>162</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>7</td>
<td>112</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notice that x cannot be greater than 5 because $12 - 2x$ must be positive. In this case, the box with the greatest volume is 176 cubic inches when $x = 2$.

Exercises

Use the spreadsheet to find the value of x that allows the box with the greatest volume for each piece of cardboard. State the volume of the box.

1. 16 inches long and 10 inches wide
 - Volume: 144 in³
2. 24 inches long and 18 inches wide
 - Volume: 368 in³
3. 28 inches long and 16 inches wide
 - Volume: 360 in³
4. 36 inches long and 24 inches wide
 - Volume: 1820 in³
5. 48 inches long and 48 inches wide
 - Volume: 8192 in³
6. 108 inches long and 44 inches wide
 - Volume: 21,120 in³
7. Study the spreadsheet you created for Exercise 5. Suppose y is the volume of the box with a height of x inches. If you were to graph the ordered pairs (x, y) and connect them with a smooth curve, what would you expect the graph to look like? Use the graphing tool in the spreadsheet to verify your conjecture. Sample answer: The graph would rise from (0, 0) to the point where x gives the greatest volume and then fall back down toward the x-axis.

8-4 Study Guide and Intervention

Special Products

Squares of Sums and Differences

Some pairs of binomials have products that follow specific patterns. One such pattern is called the square of a sum. Another is called the square of a difference.

Square of a Sum

$(a + b)^2 = (a + b)(a + b) = a^2 + 2ab + b^2$

Square of a Difference

$(a - b)^2 = (a - b)(a - b) = a^2 - 2ab + b^2$

Example 1 Find $(3a + 4)^2$.

Use the square of a sum pattern, with $a = 3a$ and $b = 4$.

$(3a)^2 + 2(3a)(4) + (4)^2 = 9a^2 + 24a + 16$

The product is $9a^2 + 24a + 16$.

Example 2 Find $(2x - 9)(2x - 9)$.

Use the square of a difference pattern with $a = 2x$ and $b = 9$.

$(2x)^2 - 2(2x)(9) + (9)^2 = 4x^2 - 36x + 81$

The product is $4x^2 - 36x + 81$.

Exercises

Find each product.

1. $(x - 6)^2$
 - $x^2 - 12x + 36$
2. $(3p + 4)^2$
 - $9p^2 + 24p + 16$
3. $(4a - 5)^2$
 - $16a^2 - 40a + 25$
4. $(2x - 1)^2$
 - $4x^2 - 4x + 1$
5. $(2h + 3)^2$
 - $4h^2 + 12h + 9$
6. $(m + 5)^2$
 - $m^2 + 10m + 25$
7. $(a + 3)^2$
 - $a^2 + 6a + 9$
8. $(3 - p)^2$
 - $9 - 6p + p^2$
9. $(x - 5y)^2$
 - $x^2 - 10xy + 25y^2$
10. $(8y + 4)^2$
 - $64y^2 + 64y + 16$
11. $(8 + x)^2$
 - $64 + 16x + x^2$
12. $(3a - 2b)^2$
 - $9a^2 - 12ab + 4b^2$
13. $(2x - 8)^2$
 - $(4x^2 - 32x + 64)$
14. $(x^2 + 1)^2$
 - $x^4 + 2x^2 + 1$
15. $(m^2 - 2)^2$
 - $m^4 - 4m^2 + 4$
16. $(x^2 - 1)^2$
 - $(2h^2 - k^2)^2$
17. $(3x + 3)^2$
 - $16x^2 + 3x + 9$
18. $(x - 3)^2$
 - $(2p + 4)^2$
19. $(x - 3)^2$
 - $(2p + 4)^2$
20. $(2x - 2)^2$
 - $(3x - 2)^2$
8-4 Study Guide and Intervention

Special Products

Product of a Sum and a Difference There is also a pattern for the product of a sum and a difference of the same two terms, \((a + b)(a - b)\). The product is called the difference of squares.

Example

Find \((5x + 3y)(5x - 3y)\).

\[
(5x + 3y)(5x - 3y) = (5x)^2 - (3y)^2
\]

The product is \(25x^2 - 9y^2\).

Exercises

Find each product.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ((x - 4)(x + 4))</td>
<td>(x^2 - 16)</td>
</tr>
<tr>
<td>2. ((p + 2)(p - 2))</td>
<td>(p^2 - 4)</td>
</tr>
<tr>
<td>3. ((4x - 5)(4x + 5))</td>
<td>(16x^2 - 25)</td>
</tr>
<tr>
<td>4. ((2x - 1)(2x + 1))</td>
<td>(4x^2 - 1)</td>
</tr>
<tr>
<td>5. ((h + 7)(h - 7))</td>
<td>(h^2 - 49)</td>
</tr>
<tr>
<td>6. ((n - 5)(n + 5))</td>
<td>(n^2 - 25)</td>
</tr>
<tr>
<td>7. ((2d - 3)(2d + 3))</td>
<td>(4d^2 - 9)</td>
</tr>
<tr>
<td>8. ((3 - 5)(3 + 5))</td>
<td>(9 - 25q^2)</td>
</tr>
<tr>
<td>9. ((x - y)(x + y))</td>
<td>(x^2 - y^2)</td>
</tr>
<tr>
<td>10. ((y - 4)(y + 4))</td>
<td>(y^2 - 16)</td>
</tr>
<tr>
<td>11. ((8 + 4)(8 - 4))</td>
<td>(64 - 16)</td>
</tr>
<tr>
<td>12. ((3n - 2)(3n + 2))</td>
<td>(9n^2 - 4)</td>
</tr>
<tr>
<td>13. ((3y - 8)(3y + 8))</td>
<td>(9y^2 - 64)</td>
</tr>
<tr>
<td>14. ((x - 1)(x + 1))</td>
<td>(x^2 - 1)</td>
</tr>
<tr>
<td>15. ((m - 5)(m + 5))</td>
<td>(m^2 - 25)</td>
</tr>
<tr>
<td>16. ((x^2 - 2x + 2))</td>
<td>(x^2 - 4)</td>
</tr>
<tr>
<td>17. ((h^2 - k)^2)</td>
<td>(h^2 - k^2)</td>
</tr>
<tr>
<td>18. ((\frac{1}{3}x + 2)(\frac{1}{3}x - 2))</td>
<td>(\frac{1}{16}x^2 - 4)</td>
</tr>
<tr>
<td>19. ((3x - 2)^2(3x + 2)^2)</td>
<td>(9x^2 - 4)</td>
</tr>
<tr>
<td>20. ((2p - 5)(2p + 5)^2)</td>
<td>(4p^2 - 25)</td>
</tr>
<tr>
<td>21. ((\frac{1}{3}x + 2)(\frac{1}{3}x - 2))</td>
<td>(\frac{16}{9}x^2 - 4)</td>
</tr>
</tbody>
</table>

Chapter 8 26 Glencoe Algebra 1

8-4 Skills Practice

Special Products

Find each product.

<table>
<thead>
<tr>
<th>Exercise</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ((a + 3)^2)</td>
<td>(n^2 + 6n + 9)</td>
</tr>
<tr>
<td>2. ((a + 4x + 4))</td>
<td>(x^2 + 8x + 16)</td>
</tr>
<tr>
<td>3. ((y - 7)^2)</td>
<td>(y^2 - 14y + 49)</td>
</tr>
<tr>
<td>4. ((t - 3x - 3)^2)</td>
<td>(t^2 - 6t + 9)</td>
</tr>
<tr>
<td>5. ((b + 1)(b - 1))</td>
<td>(b^2 - 1)</td>
</tr>
<tr>
<td>6. ((a - 5)(a + 5))</td>
<td>(a^2 - 25)</td>
</tr>
<tr>
<td>7. ((p - 4)^2)</td>
<td>(p^2 - 8p + 16)</td>
</tr>
<tr>
<td>8. ((x + 3)(x - 3))</td>
<td>(x^2 - 9)</td>
</tr>
<tr>
<td>9. ((t + 2)(t + 2))</td>
<td>(t^2 + 4t + 4)</td>
</tr>
<tr>
<td>10. ((r - 1)(r - 1))</td>
<td>(r^2 - 2r + 1)</td>
</tr>
<tr>
<td>11. ((3p + 2)(3p - 2))</td>
<td>(9p^2 - 4)</td>
</tr>
<tr>
<td>12. ((3m - 3)(3m + 3))</td>
<td>(9m^2 - 9)</td>
</tr>
<tr>
<td>13. ((6 + u)^2)</td>
<td>(36 + 12u + u^2)</td>
</tr>
<tr>
<td>14. ((r + t)^2)</td>
<td>(r^2 + 2rt + t^2)</td>
</tr>
<tr>
<td>15. ((3y + 1)(3y - 1))</td>
<td>(9y^2 - 1)</td>
</tr>
<tr>
<td>16. ((c - d)^2)</td>
<td>(c^2 - 2cd + d^2)</td>
</tr>
<tr>
<td>17. ((3b - 2)^2)</td>
<td>(9b^2 - 12b + 4)</td>
</tr>
<tr>
<td>18. ((w + 3)^2)</td>
<td>(w^2 + 6w + 9)</td>
</tr>
<tr>
<td>19. ((3p - 3)(3p + 3))</td>
<td>(9p^2 - 16)</td>
</tr>
<tr>
<td>20. ((t + 2u)^2)</td>
<td>(t^2 + 4tu + 4u^2)</td>
</tr>
<tr>
<td>21. ((x + 4)^2)</td>
<td>(x^2 + 8x + 16)</td>
</tr>
<tr>
<td>22. ((3b + 7)(3b - 7))</td>
<td>(9b^2 - 49)</td>
</tr>
<tr>
<td>23. ((3y - 3)(3y + 3))</td>
<td>(9y^2 - 9)</td>
</tr>
<tr>
<td>24. ((n^2 + 1)^2)</td>
<td>(n^2 + 4n + 1)</td>
</tr>
<tr>
<td>25. ((2x + 3)^2)</td>
<td>(4x^2 + 12x + 9)</td>
</tr>
<tr>
<td>26. ((3n - 2)^2)</td>
<td>(9n^2 - 12n + 4)</td>
</tr>
</tbody>
</table>

27. **GEOMETRY** The length of a rectangle is the sum of two whole numbers. The width of the rectangle is the difference of the same two whole numbers. Using these facts, write a verbal expression for the area of the rectangle. The area is the square of the larger number minus the square of the smaller number.

Chapter 8 27 Glencoe Algebra 1
8-4 Practice

Special Products

Find each product.

1. \((a + 9)^2\) \[a^2 + 18a + 81\]
2. \((q + 8)^2\) \[q^2 + 16q + 64\]
3. \((x - 10)^2\) \[x^2 - 20x + 100\]
4. \((r - 11)^2\) \[r^2 - 22r + 121\]
5. \((p + 7)^2\) \[p^2 + 14p + 49\]
6. \((b + 6)^2\) \[b^2 + 12b + 36\]
7. \((z + 13)^2\) \[z^2 + 26z + 169\]
8. \((4v + 2)^2\) \[16v^2 + 16v + 4\]
9. \((5w - 4)^2\) \[25w^2 - 40w + 16\]
10. \((6k - 1)^2\) \[36k^2 - 12k + 1\]
11. \((3m + 4)^2\) \[9m^2 + 24m + 16\]
12. \((7v - 2)^2\) \[49v^2 - 28v + 4\]
13. \((7k + 3)(7k - 3)\) \[49k^2 - 9\]
14. \((4d - 7)(4d + 7)\) \[16d^2 - 49\]
15. \((3c + 9)(3c - 9)\) \[9c^2 - 81\]
16. \((a + 5)(a - 5)\) \[a^2 + 10a + 25\]
17. \((a + 6u)^2\) \[a^2 + 12au + 36u^2\]
18. \((a + p)^2\) \[a^2 + 2ap + p^2\]
19. \((6h - m)^2\) \[36h^2 - 12hm + m^2\]
20. \((k - 6p)^2\) \[k^2 - 12kp + 36p^2\]
21. \((a - 7p)^2\) \[a^2 - 14ap + 49p^2\]
22. \((a - 7k)^2\) \[a^2 - 14ak + 49k^2\]
23. \((6n + 4p)^2\) \[36n^2 + 48np + 16p^2\]
24. \((5g + 6l)^2\) \[25g^2 + 60gl + 36l^2\]
25. \((6a - 7b + 6c + 7d)\) \[36a^2 - 56ab + 49b^2\]
26. \((6h + 3d)(6h - 3d)\) \[36h^2 - 9d^2\]
27. \((5a - 2b)^2\) \[25a^2 - 20ab + 4b^2\]
28. \((3c + 2m)^2\) \[9c^2 + 12cm + 4m^2\]
29. \((5z - 2w)^2\) \[25z^2 - 20zw + 4w^2\]
30. \((4n - 2)^2\) \[16n^2 - 16n + 4\]
31. \((6s - g)^2\) \[36s^2 - 12sg + g^2\]
32. \((2b + g)^2\) \[4b^2 + 4bg + g^2\]
33. \((2b - 3c)^2\) \[4b^2 - 12bc + 9c^2\]
34. \(\text{GEOMETRY} \) Janelle wants to enlarge a square graph that she has made so that a side of the new graph will be 1 inch more than twice the original side. What trinomial represents the area of the enlarged graph? \(4g^2 + 4g + 1\)
35. \(\text{GENETICS} \) In a guinea pig, pure black hair coloring \(B\) is dominant over pure white coloring \(b\). Suppose two hybrid \(Bb\) guinea pigs, with black hair coloring, are bred.
 a. Find an expression for the genetic make-up of the guinea pig offspring. \(0.25BB + 0.50Bb + 0.25bb\)
 b. What is the probability that two hybrid guinea pigs with black hair coloring will produce a guinea pig with white hair coloring? \(25\%\)

8-4 Word Problem Practice

Special Products

1. PROBABILITY The spinner below is divided into 3 equal sections. If you spin the spinner 5 times in a row, the possible outcomes are shown in the table below.

<table>
<thead>
<tr>
<th></th>
<th>Red</th>
<th>Blue</th>
<th>Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>50%</td>
<td>20%</td>
<td>30%</td>
</tr>
<tr>
<td>2nd</td>
<td>60%</td>
<td>25%</td>
<td>15%</td>
</tr>
<tr>
<td>3rd</td>
<td>35%</td>
<td>45%</td>
<td>20%</td>
</tr>
<tr>
<td>4th</td>
<td>10%</td>
<td>30%</td>
<td>60%</td>
</tr>
<tr>
<td>5th</td>
<td>75%</td>
<td>15%</td>
<td>10%</td>
</tr>
</tbody>
</table>

What is the probability of spinning a red and a blue in two spins? \(50\%\)

2. GRAVITY The height of a penny \(t\) seconds after being dropped down a well is given by the product of \((10 - 4t)\) and \((10 + 4t)\). Find the product and simplify. What type of special product does this represent? \(100 - 16t^2\); product of a sum and difference

3. TRAFFIC PLANNING The Lincoln Memorial in Washington, D.C. is surrounded by a circular drive called Lincoln Circle. Suppose the National Park Service wants to change the layout of Lincoln Circle so that there are two concentric circular roads. Write a polynomial equation for the area \(A\) of the space between the roads if the radius of the inside road is 10 meters less than the radius of the outside road. \(A = 20\pi - 100\pi\)

4. BUSINESS The Combo Lock Company finds that its profit data from 2005 to the present can be modeled by the function \(y = 4n^2 + 44n + 121\), where \(y\) is the profit \(n\) years since 2005. Which special product does this polynomial demonstrate? Explain.

5. STORAGE A cylindrical tank is placed along a wall. A cylindrical PVC pipe will be inside the corner behind the tank. See the side view diagram below. The radius of the tank is \(r\) inches and the radius of the PVC pipe is \(s\) inches.

\[r + s\]

\[r\]

\[s\]

- Use the Pythagorean Theorem to write an equation for the relationship between the two radii. Simplify your equation so that there is a zero on one side of the equals sign. \(0 = s^2 - 6rs + s^2\)
- Write a polynomial equation you could solve to find the radius \(s\) of the PVC pipe if the radius of the tank is 20 inches. \(0 = s^2 - 120s + 400\)
8-4 Enrichment

Sums and Differences of Cubes
Recall the formulas for finding some special products:

Perfect-square trinomials:
\((a + b)^2 = a^2 + 2ab + b^2\) or
\((a - b)^2 = a^2 - 2ab + b^2\)

Difference of two squares:
\((a + b)(a - b) = a^2 - b^2\)

A pattern also exists for finding the cube of a sum \((a + b)^3\).

1. Find the product of \((a + b)(a + b)(a + b)\).
\(a^3 + 3a^2b + 3ab^2 + b^3\)

2. Use the pattern from Exercise 1 to evaluate \((x + 2)^3\).
\(x^3 + 6x^2 + 12x + 8\)

3. Based on your answer to Exercise 1, predict the pattern for the cube of a difference \((a - b)^3\).
\(a^3 - 3a^2b + 3ab^2 - b^3\)

4. Find the product of \((a - b)(a - b)(a - b)\) and compare it to your answer for Exercise 3.
\(a^3 - 3a^2b + 3ab^2 - b^3\)

5. Use the pattern from Exercise 4 to evaluate \((x - 4)^3\).
\(x^3 - 12x^2 + 48x - 64\)

Find each product.
6. \((x + 6)^3\)
\(x^3 + 18x^2 + 108x + 216\)

7. \((x - 10)^3\)
\(x^3 - 30x^2 + 300x - 1000\)

8. \((3x - y)^3\)
\(27x^3 - 27x^2y + 9xy^2 - y^3\)

9. \((3x - y)^3\)
\(8x^3 - 12x^2y + 6xy^2 - y^3\)

10. \((4x + 3y)^3\)
\(64x^3 + 144x^2y + 108xy^2 + 27y^3\)

11. \((5x + 2)^3\)
\(125x^3 + 150x^2 + 60x + 8\)

8-5 Study Guide and Intervention

Using the Distributive Property

Use the Distributive Property to Factor
The Distributive Property has been used to multiply a polynomial by a monomial. It can also be used to express a polynomial in factored form. Compare the two columns in the table below.

<table>
<thead>
<tr>
<th>Multiplying</th>
<th>Factoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3(x + b) = 3x + 3b)</td>
<td>(3x + 3b = 3(x + b))</td>
</tr>
<tr>
<td>(4(y - z) = 4y - 4z)</td>
<td>(4y - 4z = 4(y - z))</td>
</tr>
<tr>
<td>(9(y + 2x + 1) = 9y + 18x + 9)</td>
<td>(9y + 18x + 9 = 9(y + 2x + 1))</td>
</tr>
</tbody>
</table>

Example 1 Use the Distributive Property to factor \(12mp + 80m^2\).
Find the GCF of \(12mp\) and \(80m^2\).
\(12mp = 2 \cdot 2 \cdot 2 \cdot 3 \cdot m \cdot p\)
\(80m^2 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 5 \cdot m \cdot m\)
GCF = \(2 \cdot 2 \cdot m = 4m\)
Write each term as the product of the GCF and its remaining factors.
\(12mp + 80m^2 = 4m(3p) + 4m(20m)\)
\(= 4m(3p + 20m)\)
Thus \(12mp + 80m^2 = 4m(3p + 20m)\).

Example 2 Factor
\(6x + 3y + 2bx + by\) by grouping.
\((3a + b)(2x + y)\)
\(= 3a(2x + y) + b(2x + y)\)
\(= 6x + 3y + 2bx + by\)

Exercises
Factor each polynomial.
1. \(24x^2 + 48y\)
\(24(x + 2y)\)

2. \(30mp^2 + m^2p - 6p\)
\(p(30mp + m^2 - 6)\)

3. \(q^3 - 18q^2 + 22q\)
\(q(q^2 - 18q + 22)\)

4. \(9x^3 - 3x\)
\(3x(3x^2 - 1)\)

5. \(4m^3 - 6p - 8mp\)
\(2(2m + 3p - 4mp)\)

6. \(15r^2 - 15^2\)
\(15r(3r - 1)\)

7. \(7,144^2 - 49^4\)
\(7(2 - 6^2 - 7^2)\)

8. \(8,55^2 - 11^4 - 44^5\)
\(11^2(5 - 4^2 - 3^2)\)

9. \(9,14^2 - 28^2 + y\)
\(y(14y^2 - 28y + 1)\)

10. \(16, 123p + 803m^2\)
\(16, 123p + 803m^2\)

11. \(12, 4p^2 + 28b^2 + 7a\)
\(ab(4a + 28b + 7)\)

12. \(18, 20 + 13y + 2\)
\((x + 1)(3x + 2)\)

13. \(17, 6y + 3y + 8x - 2\)
\((2y + 1)(3y - 2)\)

14. \(18, 20 + 13y + 2\)
\((x + 1)(3x + 2)\)
8-5 Study Guide and Intervention (continued)

Using the Distributive Property

Solve Equations by Factoring The following property, along with factoring, can be used to solve certain equations.

Zero Product Property For any real numbers a and b, if ab = 0, then either a = 0, b = 0, or both a and b equal 0.

Example Solve 9x^2 + x = 0. Then check the solutions.

Write the equation so that it is of the form ab = 0.

9x^2 + x = 0 Original equation
x(9x + 1) = 0 Factor the GCF of 9x^2 + x, which is x.
x = 0 or 9x + 1 = 0 Zero Product Property
x = 0 or x = −1/9 Solve each equation.

The solution set is {0, −1/9}.

Check Substitute 0 and −1/9 for x in the original equation.

9(0)^2 + (0) = 9(0) + 1 = 0 9(−1/9)^2 + (−1/9) = 0
0 = 0 ✓ 0 = 0 ✓

Exercises

Solve each equation. Check your solutions.

1. x(5 + 3) = 0 2. 3m(m − 4) = 0 3. (x − 3)(x + 2) = 0
 {0, −3} {0, 4} {−2, 3}

4. 3x(2x − 1) = 0 5. (4m + 8)(m − 3) = 0 6. 5x^2 = 25t
 {0, 1/2} {0, 1/2} {0, 5}

7. (4x + 2)(2x − 7) = 0 8. 5p^2 − 15p = 0 9. 4y^3 = 28y
 {−1/2, 7} {0, 1/3} {0, 7}

10. 12x^2 = −6x 11. (4a + 3)(3a − 2) = 0 12. 8y = 2y^2
 {−1/2, 0} {−1/2, 3/4} {0, 3/4}

13. x^2 = −2x 14. (6y − 4)(y + 3) = 0 15. 4m^2 = 4m
 {−2, 0} {−3, 3} {0, 1}

16. 12x = 3x^2 17. 12a^2 = −3a 18. (12a + 4)(3a − 1) = 0
 {0, 4} {−1/4, 0} {−1 1/3, 3/3}

Chapter 8 32

8-5 Skills Practice

Using the Distributive Property

Factor each polynomial.

1. 7x + 49 2. 8m − 6 3. 4m + 3
 7(x + 7) 2(4m − 3)

4. 9(2a + 3) 5. 4(2a^2 + 3)
 10a^2 − 25a 5q(2 − 5q)

6. 8x − 56a 7. 8a(x − 7)
 8a(7 + 16a) 3r(27 + 16)

8. ab^2 + a 9. x + x^2 + x^3
 t(t + 3) x(1 + x + x^3)

10. 3p^2 + 6p + p 11. 4a^2 + 6a + 3
 p(3p^2 + 6p + 1) 2(2a + 1)(a + 2)

12. 10h(4n^2 − 2hn + 14hn)
 2hn(5h^2 − n + 7)

Solve each equation. Check your solutions.

13. x^3 + 3x + 3 14. b^2 + b + b 15. 2y^2 + 2y + 3y + 3
 (x + 1)(x + 3) 2(2)(2 + 1)(2 + 2)

16. 2a^2 − 4a + a − 2 17. 6x^2 − 4x + 2 18. 9x^2 − 3x + 6 + 2
 (2x − 1)(3x − 2) (3x + 2)(3x − y)

Solve each equation. Check your solutions.

19. 11x(6x − 8) = 0 20. 6(b + 2) = 0
 21. (m − 3)(m + 5) = 0 22. 9(9x + 1) = 0
 23. x^2 − 5x = 0 24. x^2 + 3y = 0
 25. 3a^2 = 6a
 26. 2x^2 = 3x

Chapter 8 33

Glencoe Algebra 1
8-5 Practice

Using the Distributive Property

Factor each polynomial.

1. 6x - 40ab
 2. 4y^2 + 16
 3. 5x^2 - 3x^2 + 3r^2

2. 5ac + 30a^2c^2
 3. 8(ab + 3bc)
 4. 24y

3. 15ad + 2ad
 4. 32a + 24b
 5. 6x^2 - 48by

4. 7.30x^2 + 35xy^2
 5. 9x^2 - 60x^2
 6. 7b(3y^2 - 4x^2)

5. 5x^2y(6x + 7y)
 6. 3a^2d(3a^2 - 2d)
 7. 15b^2(5b + 4)

6. 10.3y^2 - 24p^2r + 16pr
 7. 11.5x^3 + 10xy^2 + 25x
 8. 12x^2 + 18xy^2 + 24cx

7. 13x^2 + 4x + 2x + 8
 8. 14x^2 + 3a + 6a + 9
 9. 15x^2 - 12b + 2b - 6

9. 16.6x - 8x + 15y - 20
 10. (x + 2)(x + 4)
 11. (a + 3)(2a + 3)
 12. (4b + 2)(b - 3)

13. 17.6x + 4m + 18y - 12
 14. (x^2 + 5)(3y - 4)
 15. 36x - 15b + 16x + 20b
 16. 2m + 6(3p - 2)

Solve each equation. Check your solutions.

19. x(x - 32) = 0
 20. 4b(b + 4) = 0
 21. (y - 3)(y + 2) = 0

 {0, 32} {0, 4} {−2, 3}

22. a + 6(3a - 7) = 0
 23. y + 5(x + 4) = 0
 24. 4y + 8(3y - 4) = 0

 {−6, 7} {5, 2} {−2, 4}

25. 2x^2 + 20x = 0
 26. 8x^2 - 4y = 0
 27. 9x^2 + 27x

 {−10, 0} {0, 12} {0, 3}

28. 18x^2 = 15x
 29. 14x^2 = -21x
 30. 8x^2 = -8x

 {0, 5} {3, 2} {13, 0}

31. LANDSCAPING A landscaping company has been commissioned to design a triangular flower bed for a mall entrance. The final dimensions of the flower bed have not been determined, but the company knows that the height will be two feet less than the base. The area of the flower bed can be represented by the equation A = \frac{a^2}{2} - b.

a. Write this equation in factored form. A = b(\frac{1}{2}b - 1)

b. Suppose the base of the flower bed is 16 feet. What will be its area? 112 ft^2

32. PHYSICAL SCIENCE Mr. Alim's science class launched a toy rocket from ground level with an initial upward velocity of 60 feet per second. The height h(t) of the rocket in feet above the ground after t seconds is modeled by the equation H = 60t - 16t^2. How long was the rocket in the air before it returned to the ground? 3.75 s

NAME ________________________ DATE __________ PERIOD ________
Linear Combinations
The greatest common factor, GCF, of two numbers can be written as a linear combination of the two numbers. A linear combination is an expression of the form \(ax + by\).

Example 1
Write the greatest common factor of 52 and 36 as a linear combination.

First, use the Euclidean Algorithm to find the greatest common factor of the two numbers.

\[
\begin{align*}
52 & \div 36 = 1 \text{ remainder } 16 \\
36 & \div 16 = 2 \text{ remainder } 4 \\
16 & \div 4 = 4 \text{ remainder } 0
\end{align*}
\]

Last divisor used is the GCF. In this case, 4 is the GCF for 36 and 52.

To write 4 as a linear combination of 36 and 52, it needs to be written as:

\[4 = 36x + 52y\]

where \(x\) and \(y\) are some integers.

Use trial and error to determine the two integers.

The two integers that work are \(x = 3\) and \(y = -2\). So, the linear combination for the greatest common factor of 52 and 36 is:

\[4 = 36(3) + 52(-2)\]

Exercises
Write the greatest common factor for each pair of numbers as a linear combination.

1. \(16, 64\)
 \[16 = 16(1) + 64(0)\]

2. \(2, 28\)
 \[2 = 2(-1) + 28(1)\]

3. \(3, 18\)
 \[3 = 3(1) + 18(0)\]

4. \(4, 36\)
 \[4 = 15(5) - 36(2)\]

5. \(5, 6\)
 \[2 = 6(-1) + 8(1)\]

6. \(6, 12\)
 \[6 = 18(-2) + 42(1)\]

Exercises
Factor each polynomial.

1. \(x^2 + 4x + 3\)
 \[(x + 3)(x + 1)\]

2. \(x^2 - 7x + 10\)
 \[(x - 5)(x - 2)\]

3. \(x^2 - 3x + 2\)
 \[(x - 2)(x - 1)\]

4. \(x^2 + 10x + 21\)
 \[(x + 7)(x + 3)\]

5. \(x^2 + 10x + 21\)
 \[(x + 7)(x + 3)\]

6. \(x^2 + 10x + 21\)
 \[(x + 7)(x + 3)\]

7. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

8. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

9. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

10. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

11. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

12. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

13. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

14. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

15. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

16. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

17. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

18. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

19. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]

20. \(x^2 - 4x - 12\)
 \[(x - 6)(x + 2)\]
Chapter 8

8-6 Skills Practice

Solving $x^2 + bx + c = 0$

Factor each polynomial.

1. $t^2 + 8t + 12$
 \((t + 2)(t + 6)\)

2. $n^2 + 7n + 12$
 \((n + 3)(n + 4)\)

3. $p^2 + 9p + 20$
 \((p + 5)(p + 4)\)

4. $h^2 + 9h + 18$
 \((h + 6)(h + 3)\)

5. $n^2 + 3n - 18$
 \((n + 6)(n - 3)\)

6. $x^2 + 2x - 8$
 \((x + 4)(x - 2)\)

7. $y^2 - 5y - 6$
 \((y + 1)(y - 6)\)

8. $g^2 + 3g - 10$
 \((g + 5)(g - 2)\)

9. $x^2 + 4x - 12$
 \((x - 2)(x + 6)\)

10. $x^2 - x - 12$
 \((x - 4)(x + 3)\)

11. $w^2 - w - 6$
 \((w - 3)(w + 2)\)

12. $y^2 - 6y + 8$
 \((y - 2)(y + 2)\)

13. $x^2 - 8x + 15$
 \((x - 5)(x - 3)\)

14. $x^2 - 9x + 8$
 \((x - 1)(x - 8)\)

15. $t^2 - 15t + 50$
 \((t - 10)(t - 5)\)

16. $-4 - 3m + m^2$
 \((m - 4)(m + 1)\)

Solve each equation. Check the solutions.

17. $x^2 - 6x + 8 = 0$
 \(\{2, 4\}\)

18. $b^2 - 7b + 12 = 0$
 \(\{3, 4\}\)

19. $m^2 + 5m + 6 = 0$
 \(\{-3, -2\}\)

20. $a^2 + 7a + 10 = 0$
 \(\{-5, -2\}\)

21. $y^2 - 2y - 24 = 0$
 \(\{-4, 6\}\)

22. $p^2 - 3p = 18$
 \(\{-3, 6\}\)

23. $h^2 + 2h = 35$
 \(\{-7, 5\}\)

24. $a^2 + 14a = -45$
 \(\{-9, 5\}\)

25. $n^2 - 36 = 5n$
 \(\{-4, 9\}\)

26. $w^2 + 30 = 11w$
 \(\{5, 6\}\)

Chapter 8
Chapter 8

NAME ____________________________________ DATE __________ PERIOD __________

8-6 Practice

Solving \(x^2 + bx + c = 0 \)

Factor each polynomial.

1. \(a^2 + 10a + 24 \) 2. \(h^2 + 12h + 27 \) 3. \(x^2 + 14x + 33 \)

(\(a + 4)(a + 6 \)) (\(h + 3)(h + 9 \)) (\(x + 11)(x + 3 \))

4. \(g^2 - 2g - 63 \) 5. \(w^2 + w - 56 \) 6. \(y^2 + 4y - 60 \)

(\(g + 7)(g - 9 \)) (\(w + 8)(w - 7 \)) (\(y + 10)(y - 6 \))

7. \(b^2 + 4b - 32 \) 8. \(n^2 - 3n - 28 \) 9. \(x^2 + 4x - 45 \)

(\(b - 4)(b + 8 \)) (\(n - 7)(n + 4 \)) (\(t - 5)(t + 9 \))

10. \(z^2 - 11z + 30 \) 11. \(d^2 - 16d + 63 \) 12. \(x^2 - 11x + 24 \)

(\(z - 6)(z - 5 \)) (\(d - 9)(d - 7 \)) (\(x - 3)(x - 8 \))

13. \(q^2 - q - 56 \) 14. \(x^2 - 6x - 55 \) 15. \(r^2 + 18r + r^2 \)

(\(q - 8)(q + 7 \)) (\(x + 5)(x - 11 \)) (\(r + 16)(r + 2 \))

16. \(48 - 16g + g^2 \) 17. \(j^2 - 9k - 10k^2 \) 18. \(m^2 - mw - 56w^2 \)

(\(g - 12)(g - 4 \)) (\(j - 10)(j + k \)) (\(m - 8v)(m + 7v \))

Solve each equation. Check the solutions.

19. \(x^2 + 17x + 42 = 0 \) 20. \(p^2 + 5p - 84 = 0 \) 21. \(h^2 + 3k - 54 = 0 \)

\(-14, -3 \) \(-12, 7 \) \(-9, 6 \)

22. \(b^2 - 12b - 64 = 0 \) 23. \(n^2 + 4n - 32 = 0 \) 24. \(h^2 - 17a = -60 \)

\(-4, 16 \) \(-8, 4 \) \(5, 12 \)

25. \(f^2 - 36f + 56 \) 26. \(x^2 - 14x + 42 = 0 \) 27. \(x^2 - 84 = 5y \)

\(-2, 28 \) \(-4, 18 \) \(-7, 12 \)

28. \(80 + 9x^2 + 18a \) 29. \(w^2 = 16x + 36 \) 30. \(x^2 + f^2 = -52 \)

\(8, 10 \) \(-2, 18 \) \(-13, -4 \)

31. Find all values of \(k \) so that the trinomial \(x^2 + kx - 35 \) can be factored using integers.

\(-34, -2, 2, 34 \)

32. Construction A construction company is planning to pour concrete for a driveway.

The length of the driveway is 16 feet longer than its width \(w \).

a. Write an expression for the area of the driveway. \(w(w + 16) \) ft\(^2 \)

b. Find the dimensions of the driveway if it has an area of 260 square feet.

10 ft by 26 ft

33. Web Design Janeel has a 10-inch by 13-inch photograph. She wants to scan the photograph, then reduce the result by the same amount in each dimension to post on her Web site. Janeel wants the area of the image to be one eighth that of the original photograph.

a. Write an equation to represent the area of the reduced image.

\((10 - x)(12 - x) = 15, \) or \(x^2 - 22x + 105 = 0 \)

b. Find the dimensions of the reduced image. 3 in. by 5 in.

Chapter 8

NAME ____________________________________ DATE __________ PERIOD __________

8-6 Word Problem Practice

Solving \(x^2 + bx + c = 0 \)

1. COMPACT DISCS A compact disc jewel case has a width 2 centimeters greater than its length. The area for the front cover is 168 square centimeters. The first two steps to finding the value of \(x \) are shown below. Solve the equation and find the length of the case.

\(\text{Length} \times \text{width} = \text{area} \)

\(x(x + 2) = 168 \) \(x^2 + 2x - 168 = 0 \)

\(-14 \) or \(12; 12 \) cm

2. MATH GAMES Fiona and Greg play a number guessing game. Greg gives Fiona this hint about his two secret numbers, "The product of the two consecutive positive integers that I am thinking of is 11 more than their sum." What are Greg’s numbers? 4 and 5

3. BRIDGE ENGINEERING A car driving over a suspension bridge is supported by a cable hanging between the ends of the bridge. Since its shape is parabolic, it can be modeled by a quadratic equation. The height above the roadbed of a bridge's cable \(h \) in inches measured at distance \(d \) in yards from the first tower is given by \(h = d^2 - 36d + 324 \).

a. Write and solve an equation to find the width of the base of the monument.

\(150 = \frac{1}{3}w(w + 5) + 9 \) or \(3w^2 + 15w - 150 = 0; w = (5, -10) \)

b. Interpret each answer in terms of the situation. \(w = 5; \) the width of the pyramid is 5 feet; \(w = -10; \) negative length doesn’t make sense in the situation.

4. PHYSICAL SCIENCE The boiling point of water depends on altitude. The following equation approximates the number of degrees \(D \) below 212°F at which water will boil at altitude \(h \).

\(D = \frac{520}{h} = h \)

In Denver, Colorado, the altitude is approximately 5280 feet above sea level. At approximately what temperature does water boil in Denver?

\(D = 10^\circ \) drop

The boiling point is about 202°F.

5. MONUMENTS Susan is designing a pyramidal stone monument for a local park. The design specifications tell her that the height needs to be 9 feet, the width of the base must be 5 feet less than the length, and the volume should be 150 cubic feet. Recall that the volume of a pyramid is given by \(V = \frac{1}{3}Bh \), where \(B \) is the area of the base and \(h \) is the height.

a. Write and solve an equation to find the width of the base of the monument.

\(150 = \frac{1}{3}w(w + 5) + 9 \) or \(3w^2 + 15w - 150 = 0; w = (5, -10) \)

b. Interpret each answer in terms of the situation. \(w = 5; \) the width of the pyramid is 5 feet; \(w = -10; \) negative length doesn’t make sense in the situation.
Puzzling Primes

A prime number has only two factors, itself and 1. The number 6 is not prime because it has 2 and 3 as factors; 5 and 7 are prime. The number 1 is not considered to be prime.

1. Use a calculator to help you find the 25 prime numbers less than 100.

Prime numbers have interested mathematicians for centuries. They have tried to find expressions that will give all the prime numbers, or only prime numbers. In the 1300s, Euler discovered that the trinomial \(x^2 + x + 41\) will yield prime numbers for values of \(x\) from 0 through 39.

2. Find the prime numbers generated by Euler’s formula for \(x\) from 0 through 7.
 41, 43, 47, 53, 59, 61, 67, 83, 97

3. Show that the trinomial \(x^2 + x + 31\) will not give prime numbers for very many values of \(x\).
 It works for \(x = 0, 2, 3, 5, 6\) but not for \(x = 1, 4, 7\)

4. Find the greatest prime number generated by Euler’s formula.
 1601

Goldbach’s Conjecture is that every nonzero even number greater than 2 can be written as the sum of two primes. No one has ever proved that this is always true, but no one has found a counterexample, either.

5. Show that Goldbach’s Conjecture is true for the first 5 even numbers greater than 2.
 \(4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, 12 = 5 + 7\)

6. Give a way that someone could disprove Goldbach’s Conjecture.
 Find an even number that cannot be written as the sum of two primes.
Solving \(ax^2 + bx + c = 0 \)

Solve Equations by Factoring

Factoring and the Zero Product Property can be used to solve some equations of the form \(ax^2 + bx + c = 0 \).

Example

Solve \(12x^2 + 3x = 2 - 2x \). Check your solutions.

Original equation

\[12x^2 + 5x - 2 = 0 \]

Rewrite equation so that one side equals 0.

\[(3x + 2)(4x - 1) = 0 \]

Factor the left side.

\[3x + 2 = 0 \text{ or } 4x - 1 = 0 \]

Zero Product Property

\[x = -\frac{2}{3}, \quad x = \frac{1}{4} \]

Solve each equation.

The solution is \(\left\{ -\frac{2}{3}, \frac{1}{4} \right\} \).

Since \(12\left(-\frac{2}{3}\right)^2 + 3\left(-\frac{2}{3}\right) = 2 - 2\left(-\frac{2}{3}\right) \) and \(12\left(\frac{1}{4}\right)^2 + 3\left(\frac{1}{4}\right) = 2 - 2\left(\frac{1}{4}\right) \), the solutions check.

Exercises

Solve each equation. Check the solutions.

1. \(8x^2 + 2x - 3 = 0 \) \[\left\{ -\frac{3}{4}, \frac{1}{2} \right\} \]

2. \(3x^2 - 2x - 5 = 0 \) \[\left\{ -\frac{5}{3}, \frac{1}{3} \right\} \]

3. \(2x^2 - 13x - 7 = 0 \) \[\left\{ 7, -\frac{1}{2} \right\} \]

4. \(4x^2 = x + 3 \) \[\left\{ \frac{2}{3}, \frac{5}{2} \right\} \]

5. \(5x^2 - 13x + 10 = 0 \) \[\left\{ 2, 5 \right\} \]

6. \(6x^2 - 11x - 10 = 0 \) \[\left\{ \frac{5}{2}, \frac{1}{3} \right\} \]

7. \(2x^2 - 40 = -11x \) \[\left\{ \frac{13}{3}, \frac{10}{3} \right\} \]

8. \(8x^2 - 21p - 40 = 0 \) \[\left\{ \frac{2}{7}, -\frac{9}{7} \right\} \]

9. \(2x^2 - 15x = -8x \) \[\left\{ -\frac{3}{2}, \frac{5}{2} \right\} \]

10. \(12x^2 - 15 = 8x \) \[\left\{ \frac{1}{2}, \frac{3}{2} \right\} \]

11. \(3a^2 + 30a + 63 = 0 \) \[\left\{ a + 3, -a - 3 \right\} \]

12. \(3a^2 - 2a - 3 = 0 \) \[\left\{ \frac{3}{2}, \frac{1}{3} \right\} \]

13. \(8x^2 + 5x = 3 + 7x \) \[\left\{ \frac{1}{4}, \frac{3}{2} \right\} \]

14. \(4x^2 - 18x + 5 = 15 \) \[\left\{ \frac{1}{2}, \frac{5}{3} \right\} \]

15. \(36b^2 - 18b = 10b - 49 \) \[\left\{ \frac{3}{2}, \frac{7}{3} \right\} \]

16. The difference of the squares of two consecutive odd integers is 24. Find the integers. \(-5, -7 \text{ and } 5, 7\)

17. GEOMETRY The length of a Charlotte, North Carolina, conservatory garden is 20 yards greater than its width. The area is 300 square yards. What are the dimensions?

18. GEOMETRY A rectangle with an area of 24 square inches is formed by cutting strips of equal width from a rectangular piece of paper. Find the dimensions of the new rectangle if the original rectangle measures 8 inches by 6 inches. 6 in. by 4 in.
8-7 Practice

Solving $ax^2 + bx + c = 0$

Factor each polynomial, if possible. If the polynomial cannot be factored using integers, write prime.

1. $2b^2 + 10b + 12$
 $2(b + 2)(b + 3)$

2. $3y^2 + 8y + 4$
 $(3y + 2)(y + 2)$

3. $4x^2 + 4x - 3$
 $(2x + 3)(2x - 1)$

4. $8h^2 - 5h - 10$
 Prime

5. $6m^2 + 7m - 3$
 $3(m - 1)(2m + 3)$

6. $10d^3 + 17d - 20$
 $(5d - 4)(2d + 5)$

7. $7a^2 - 17a + 12$
 $8, 8n^2 - 18n + 9$
 $9, 10x^2 - 9x + 6$

8. $3(a - 4)(2a - 3)$
 Prime

9. $10n^2 - n - 28$
 $11, 10t^2 + 21t - 10$
 $12, 9t^2 + 15t + 6$

10. $(5n - 7)(3n + 4)$
 $(2x + 5)(5x - 2)$
 $3(x + 2)(x + 1)$

11. $12y^2 - 4y - 5$
 $14, 14k^2 - 9k - 18$
 $15, 8s^2 + 20s - 48$

12. $(2y + 1)(6y - 5)$
 $(2x - 3)(7x + 6)$
 $4(z + 4)(2z - 3)$

13. $16x^2 + 34x - 28$
 $17, 18h^2 + 15g - 18$
 $18, 12p^2 - 22p - 20$

14. $2(3q - 2)(2q + 7)$
 $3(2h + 3)(3h - 2)$
 $2(3p + 2)(2p - 5)$

Solve each equation. Check the solutions.

19. $3h^2 - 2h - 16 = 0$
 $\{ \frac{8}{3}, \frac{2}{3} \}$

20. $15y^2 - y - 2$
 $\{ 1, \frac{2}{3} \}$

21. $8y^2 - 10y + 3 = 0$
 $\{ \frac{1}{2}, \frac{3}{2} \}$

22. $6b^2 - 5b = 4$
 $\{ -\frac{1}{2}, \frac{3}{2} \}$

23. $10r^2 + 21r = -4r + 6$
 $\{ -\frac{1}{2}, \frac{3}{2} \}$

24. $10g^2 + 10 = 29g$
 $\{ 2, \frac{5}{2} \}$

25. $6y^2 = -7y - 2$
 $\{ -\frac{3}{2}, \frac{3}{4} \}$

26. $5a^2 = -6a + 15$
 $\{ -\frac{5}{3}, \frac{5}{3} \}$

27. $12d^2 + 15d = 16d + 20$
 $\{ -\frac{5}{3}, \frac{5}{3} \}$

28. $12x^2 + 1 = -x$
 $\{ -\frac{1}{3}, \frac{1}{3} \}$

29. $8y^2 - 16y = 6a - 12$
 $\{ -\frac{1}{3}, \frac{4}{3} \}$

30. $18a^2 + 10a = -11a + 4$
 $\{ -\frac{1}{3}, \frac{4}{3} \}$

31. DIVING Lauren dove into a swimming pool from a 15-foot-high diving board with an initial upward velocity of 8 feet per second. Find the time t in seconds it took Lauren to enter the water. Use the model for vertical motion given by the equation $h = -16t^2 + vt + s$, where h is height in feet, t is time in seconds, v is the initial upward velocity in feet per second, and s is the initial height in feet. (Hint: Let $h = 0$ represent the surface of the pool.) 125 s

32. BASEBALL Brad tossed a baseball in the air from a height of 6 feet with an initial upward velocity of 14 feet per second. Enrique caught the ball on its way down at a point 4 feet above the ground. How long was the ball in the air before Enrique caught it? Use the model of vertical motion from Exercise 31. 4 s

Chapter 8 46 Glencoe Algebra 1

8-7 Word Problem Practice

Solving $ax^2 + bx + c = 0$

1. BREAK EVEN Breaking even occurs when the revenues for a business equal the cost. A local children's museum studied their costs and revenues from paid admission. They found that their break-even time is given by the equation $2h^2 - 2h - 24 = 0$, where h is the number of hours the museum is open per day. How many hours must the museum be open per day to reach the break even point?
 4 hours

2. CARPENTRY Miko wants to build a toy box for her sister. It is to be 2 feet high, and the width is to be 3 feet less than its length. If it needs to hold a volume of 80 cubic feet, find the length and width of the box.
 length = 8 ft; width = 5 ft

3. FURNITURE The student council wants to purchase a table for the school lobby. The table comes in a variety of dimensions, but for every table, the length is 1 meter greater than twice the width. The student council has budgeted for a table top with an area of exactly 3 square meters.
 Find the width and length of the table they can purchase. width = 1 m; length = 3 m

4. LADDERS A ladder is resting against a wall. The top of the ladder touches the wall. The bottom of the ladder is one foot more than twice its distance from the wall. Find the distance from the wall to the bottom of the ladder. (Hint: Use the Pythagorean Theorem to solve the problem.) 8 ft

5. FARMING Mr. Hensley has a total of 480 square feet of sheet metal with which he would like to construct a cylindrical tank for storing grain. The local zoning law limits the height of the tank to 13.5 feet. Recall that a formula for the surface area of a bottomless cylinder with radius r and height h is $A = \pi r^2 + 2\pi rh$.
 a. Write a quadratic equation to represent the information.
 \[0 = \pi r^2 + 27\pi r - 480 \]
 b. Using 3 as an approximation for π, solve the equation for r. \{ 5, -32 \}
 c. What radius should Mr. Hensley use for his tank? 5 ft

Chapter 8 47 Glencoe Algebra 1
8-7 Enrichment

Area Models for Quadratic Trinomials

After you have factored a quadratic trinomial, you can use the factors to draw geometric models of the trinomial.

The TABLE feature can be used to help factor a polynomial by finding the factors of a certain product, which have a specific sum.

Factor each trinomial. Then follow the directions to draw each model of the trinomial.

1. \(x^2 + 2x - 3 \) Use \(x = 2 \). Draw a rectangle in centimeters.
\[(x + 3)(x - 1) \]

2. \(3x^2 + 5x - 2 \) Use \(x = 1 \). Draw a rectangle in centimeters.
\[(x + 2)(3x - 1) \]

3. \(x^2 - 4x + 3 \) Use \(x = 4 \). Draw two different right triangles in centimeters.
\[(x - 1)(x - 3) \]

4. \(9x^2 - 9x + 2 \) Use \(x = 2 \). Draw two different right triangles. Use 0.5 centimeter for each unit.
\[(3x - 2)(3x - 1) \]

Thus, 10 \(x^2 - 43x + 28 \) by grouping.

\[10x^2 - 43x + 28 = 10(x^2 - 4x + 28) \]
\[= 2(x^2 - 4x + 28) \]
\[= 2(x^2 - 4x + 4) \]
\[= 2(x - 2)^2 \]

The area of the right triangle is also \(x^2 + 5x - 6 \).

To draw a rectangular model, the value of factors whose sum is \(-x \) so that the shorter side would have a length of 1. Then the drawing was done in centimeters. So, the area of the rectangle is \(x^2 + 5x - 6 \).

To draw a right triangle model, recall that the area of a triangle is one-half the base times the height. So, one of the sides must be twice as long as the shorter side of the rectangular model.

To display the negative factors of 280 by setting \(Tbl = 1 \).

Example 2

Factor 12 \(x^2 - 7x - 12 \).

Look at the factors of 12 - 12 or -144 for a pair whose sum is -7. Enter an equation to determine the factors in \(Y1 \) and an equation to find the sum of factors in \(Y2 \). Examine the table to find a sum of -7.

\[12x^2 - 7x - 12 = 12x^2 + 9x + (-16x) - 12 \]
\[= 3(4x + 3) - 4(4x + 3) \]
\[= (4x + 3)(3x - 4) \]

Thus, 12 \(x^2 - 7x - 12 \) = (4x - 3)(3x - 4).

Exercises

Factor each quadratic polynomial if possible.

1. \(x^2 + 2x - 15 \)
\[(x + 5)(x - 3) \]

2. \(x^2 - 14x + 49 \)
\[(x - 7)^2 \]

3. \(2x^2 + 16x + 35 \)
\[(2x + 5)(x + 7) \]

4. \(6x^2 - 25y + 18 \)
\[(3x - 2)(2y + 3) \]

5. \(6x^2 - 20y + 21 \)
\[(3x - 2)(2y + 3)(2m + 3)(3n + 2) \]

6. \(12x^2 - 7x - 12 \)
\[(4x - 3)(3x - 2) \]

7. \(9x^2 + 40y + 25 \)
\[(4y + 5)^2 \]

8. \(9x^2 + 40y + 25 \)
\[(4y + 5)^2 \]

9. \(4x^2 - 26x - 126 \)
\[(2x + 29)(2b - 17) \]
8-8 Study Guide and Intervention

Differences of Squares

Factor Differences of Squares The binomial expression \(a^2 - b^2 \) is called the difference of two squares. The following pattern shows how to factor the difference of squares.

\[
 a^2 - b^2 = (a - b)(a + b)
\]

Example 1 Factor each polynomial.

a. \(n^2 - 64 \)

\[
 n^2 - 64 = (n^2 - 8^2) = (n - 8)(n + 8) \] Factor

b. \(4m^2 - 81n^2 \)

\[
 4m^2 - 81n^2 = (2m)^2 - (9n)^2 = (2m - 9n)(2m + 9n) \] Factor

Example 2 Factor each polynomial.

a. \(50a^2 - 72 \)

\[
 50a^2 - 72 = (50a^2 - 36) = 2(25a^2 - 18) \]

b. \(4x^2 + 8x - 4x - 8x \)

\[
 4x^2 + 8x - 4x - 8x = 4x(x^2 + 2x - x - 2) = 4x(x^2 - 2) \] Factor out the GCF of \(4x \).

Exercises

Factor each polynomial.

1. \(x^2 - 81 \)

\[
 (x + 9)(x - 9) \]

2. \(m^2 - 100 \)

\[
 (m + 10)(m - 10) \]

3. \(16n^2 - 25 \)

\[
 (4n - 5)(4n + 5) \]

4. \(36m^2 - 100y^2 \)

\[
 (6 + 10y)(6 - 10y) \]

5. \(5a^2 - 36 \)

\[
 (7a + 6)(7a - 6) \]

6. \(16a^2 - 9b^2 \)

\[
 (4a - 3b)(4a + 3b) \]

7. \(729p^2 - 50 \)

\[
 (15p - a)(15p + a) \]

8. \(9 - 2 + 2e^2 \)

\[
 2(x - 1)(x + 1) \]

9. \(-81 + a^3 \)

\[
 (a - 9)(a + 3)(a^2 + 9) \]

10. \(16x^2 - 25 \)

\[
 (4x + 5)(4x - 5) \]

11. \(12.8y^2 - 200 \)

\[
 8(y + 5)(y - 5) \]

12. \(14.2y^2 - 32z^2 \)

\[
 2(y^2 + 4)(y - 4) \]

13. \(15.8m^2 - 128n^2 \)

\[
 8m(m + 4)(m - 4) \]

14. \(18.2y^2 - 72z^4 \)

\[
 3y(y - 4)(y + 4) \]

15. \(2a^2 - 98a^2b^2 \)

\[
 2a(a - 7b)(a + 7b) \]

16. \(21.3x^4 + 36x - 36x \)

\[
 3x(x - 1)(x + 1)(x + 2) \]

17. \(20.3a^3 - 1(a - 1) \)

\[
 3a^2(a + 1)(a - 1) \]

8-8 Study Guide and Intervention (continued)

Solve Equations by Factoring Factoring and the Zero Product Property can be used to solve equations that can be written as the product of any number of factors set equal to 0.

Example

Solve each equation. Check your solutions.

a. \(x^2 - 1 = 0 \)

\[
 x^2 - 1 = 0 \]

Original equation

\[
 x^2 = 1 \]

\[
 x = 1 \text{ or } x = -1 \]

Zero Product Property

\[
 x = 1 \]

or \(x = -1 \)

The solution set is \{1, -1\}. Check that \(1^2 - 1 = 0 \) and \(-1^2 - 1 = 0 \), both solutions check.

b. \(4x^3 = 9\)

\[
 4x^3 = 9 \]

Subtract \(9 \) from each side.

\[
 4x^3 - 9 = 0 \]

Zero Product Property

\[
 x = 0 \text{ or } (2x + 3) = 0 \text{ or } (2x - 3) = 0 \]

\[
 x = 0 \]

or \(x = -3/2 \) or \(x = 3/2 \)

The solution set is \(\{0, -3/2, 3/2\} \).

Since \(4(0)^3 = 0, 4(3/2)^3 = 0 \), and \(4(-3/2)^3 = 0 \), the solutions check.

Exercises

Solve each equation by factoring. Check the solutions.

1. \(81x^2 = 49 \)

\[
 81x^2 = 49 \]

\[
 x^2 = \frac{7}{9} \]

\[
 x = \frac{7}{9} \text{ or } x = -\frac{7}{9} \]

2. \(36x^2 = 1 \)

\[
 36x^2 = 1 \]

\[
 x^2 = \frac{1}{36} \]

\[
 x = \frac{1}{6} \text{ or } x = -\frac{1}{6} \]

3. \(25x^2 - 100 = 0 \)

\[
 25x^2 - 100 = 0 \]

\[
 x^2 = 4 \]

\[
 x = 2 \text{ or } x = -2 \]

4. \(\frac{1}{4}x^2 - 625 = 0 \)

\[
 \frac{1}{4}x^2 - 625 = 0 \]

\[
 x^2 = 625 \]

\[
 x = 25 \text{ or } x = -25 \]

5. \(5x^2 + 30 = 0 \)

\[
 5x^2 + 30 = 0 \]

\[
 x^2 = -6 \]

\[
 x = \sqrt{-6} \text{ or } x = -\sqrt{-6} \]

6. \(\frac{4}{9}x^2 - x^2 = 0 \)

\[
 \frac{4}{9}x^2 - x^2 = 0 \]

\[
 x^2 = 0 \]

\[
 x = 0 \]

7. \(7.2x^2 = 25x \)

\[
 7.2x^2 = 25x \]

\[
 x^2 = \frac{25}{7.2} \]

\[
 x = \frac{25}{7.2} \text{ or } x = -\frac{25}{7.2} \]

8. \(8.7a^2 = 175a \)

\[
 8.7a^2 = 175a \]

\[
 a^2 = \frac{175}{8.7} \]

\[
 a = \frac{175}{8.7} \text{ or } a = -\frac{175}{8.7} \]

9. \(16y^2 = 25x \)

\[
 16y^2 = 25x \]

\[
 y^2 = \frac{25}{16}x \]

\[
 y = \sqrt{\frac{25}{16}x} \text{ or } y = -\sqrt{\frac{25}{16}x} \]

10. \(10.6y^2 + 36 = 0 \)

\[
 10.6y^2 + 36 = 0 \]

\[
 y^2 + \frac{36}{10.6} = 0 \]

\[
 y = \sqrt{-\frac{36}{10.6}} \text{ or } y = -\sqrt{-\frac{36}{10.6}} \]

11. \(12.6x^2 = 49 \)

\[
 12.6x^2 = 49 \]

\[
 x^2 = \frac{49}{12.6} \]

\[
 x = \sqrt{\frac{49}{12.6}} \text{ or } x = -\sqrt{\frac{49}{12.6}} \]

12. \(12.6x^2 = 49 \)

\[
 12.6x^2 = 49 \]

\[
 x^2 = \frac{49}{12.6} \]

\[
 x = \sqrt{\frac{49}{12.6}} \text{ or } x = -\sqrt{\frac{49}{12.6}} \]

13. \(36x^2 - 27b = 0 \)

\[
 36x^2 - 27b = 0 \]

\[
 x^2 = \frac{27b}{36} \]

\[
 x = \sqrt{\frac{27b}{36}} \text{ or } x = -\sqrt{\frac{27b}{36}} \]

14. \(15x^2 = 121 \)

\[
 15x^2 = 121 \]

\[
 x^2 = \frac{121}{15} \]

\[
 x = \sqrt{\frac{121}{15}} \text{ or } x = -\sqrt{\frac{121}{15}} \]
8-8 Skills Practice

Differences of Squares

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

1. \(a^2 - 4\)
 \((a + 2)(a - 2)\)
2. \(n^2 - 64\)
 \((n + 8)(n - 8)\)
3. \(1 - 49d^2\)
 \((1 + 7d)(1 - 7d)\)
4. \(-16 + p^2\)
 \((p + 4)(p - 4)\)
5. \(k^2 + 25\)
 \(\text{prime}\)
6. \(36 - 100x^2\)
 \((6 - 10w)(6 + 10w)\)
7. \(t^2 - 81u^2\)
 \((t + 9u)(t - 9u)\)
8. \(4h^2 - 25g^2\)
 \((2h + 5g)(2h - 5g)\)
9. \(64m^2 - 9y^2\)
 \((8m - 3y)(8m + 3y)\)
10. \(4c^2 - 5d^2\)
 \(\text{prime}\)
11. \(-49x^2 + 4y^2\)
 \((2t + 7r)(2t - 7r)\)
12. \(8x^2 - 72p^2\)
 \(8(x + 3p)(x - 3p)\)
13. \(20q^2 - 5r^2\)
 \(5(2q + r)(2q - r)\)
14. \(32a^2 - 50b^2\)
 \(2(4a + 5b)(4a - 5b)\)

Solve each equation by factoring. Check your solutions.

15. \(16x^2 - 9 = 0\)
 \(x = \frac{3}{4}\) or \(x = \frac{3}{4}\)
16. \(25p^2 - 16 = 0\)
 \(p = \frac{4}{5}\) or \(p = \frac{4}{5}\)
17. \(36y^2 - 49 = 0\)
 \(y = \frac{7}{6}\)
18. \(81 - 4b^2 = 0\)
 \(b = \frac{9}{2}\)
19. \(16c^2 = 4\)
 \(c = \pm \frac{1}{2}\)
20. \(18a^2 = 8\)
 \(a = \pm \frac{2}{3}\)
21. \(n^2 - \frac{9}{25} = 0\)
 \(n = \frac{3}{5}\)
22. \(k^2 - \frac{49}{64} = 0\)
 \(k = \frac{7}{8}\)
23. \(\frac{1}{25}h^2 - 16 = 0\)
 \(h = \pm 20\)
24. \(\frac{1}{16}y^2 = 81\)
 \(y = \pm 36\)

8-8 Practice

Differences of Squares

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

1. \(k^2 - 100\)
 \((k + 10)(k - 10)\)
2. \(21 - r^2\)
 \((9 + r)(9 - r)\)
3. \(16x^2 - 36\)
 \((4p + 6)(4p - 6)\)
4. \(4x^2 + 25\)
 \(\text{prime}\)
5. \(144 - 9y^2\)
 \((12 + 3f)(12 - 3f)\)
6. \(36x^2 - 49b^2\)
 \((6g + 7h)(6g - 7h)\)
7. \(121m^2 - 144p^2\)
 \((11m - 12p)(11m + 12p)\)
8. \(32 - 8y^2\)
 \(8(2 - y)(2 + y)\)
9. \(24\alpha^2 - 54\beta^2\)
 \(6(2a - 3b)(2a + 3b)\)
10. \(32q^2 - 18a^2\)
 \(2(4t - 3u)(4t + 3u)\)
11. \(9x^2 - 32\)
 \(9x(2x + 1)(2x - 1)\)
12. \(36y^2 - 36z^2\)
 \(9z(4y - z)(4y + z)\)
13. \(25p^2 - 20q^2\)
 \(5(3p + 2)(3p - 2)\)
14. \(100b^2 - 36c^2\)
 \(4b(5b + 3)(5b - 3)\)
15. \(3t^4 - 49t^2\)
 \(3t^2(t + 4)(t - 4)\)

Solve each equation by factoring. Check your solutions.

16. \(4y^2 = 81\)
 \(y = \pm \frac{3}{2}\)
17. \(64q^2 = 9\)
 \(q = \pm \frac{1}{2}\)
18. \(98b^2 = 50 = 0\)
 \(\text{no real solutions}\)
19. \(32 - 162k^2 = 0\)
 \(k = \pm \frac{3}{4}\)
20. \(r^2 - \frac{64}{121} = 0\)
 \(r = \pm \frac{8}{11}\)
21. \(16 - v^2 = 0\)
 \(v = \pm 4\)
22. \(\frac{1}{25}x^2 = 25 = 0\)
 \(x = \pm 5\)
23. \(27k^3 = 48\)
 \(k = \pm \frac{4}{3}\)
24. \(75g^2 = 147g\)
 \(g = \pm 3\)

25. EROSION A rock breaks lose from a cliff and plunges toward the ground 400 feet below. The distance \(d\) that the rock falls in \(t\) seconds is given by the equation \(d = 16t^2\). How long does it take for the rock to hit the ground? \(\text{5.5 seconds}\)

26. FORENSICS Mr. Cooper contested a speeding ticket given to him after he applied his brakes and skidded to a halt to avoid hitting another car. In traffic court, he argued that the length of the skid marks on the pavement, 150 feet, proved that he was driving under the posted speed limit of 65 miles per hour. The ticket cited his speed at 70 miles per hour. Use the formula \(d = \frac{1}{2}at^2\), where \(a\) is the speed of the car and \(d\) is the length of the skid marks, to determine Mr. Cooper’s speed when he applied the brakes. Was Mr. Cooper correct in claiming that he was not speeding when he applied the brakes? \(60\ mph: \text{yes}\)
8-8 Word Problem Practice

Differences of Squares

1. **LOTTERY** A state lottery commission analyzes the ticket purchasing patterns of its citizens. The following expression is developed to help officials calculate the likely number of people who will buy tickets for a certain size jackpot.

\[81a^2 - 36b^2 \]

Factor the expression completely.

\[9(3a + 2b)(3a - 2b) \]

2. **OPTICS** A reflector on the inside of a certain flashlight is a parabola given by the equation \(y = x^2 - 25 \). The length and width, but he remembers that the length was 8 more than some number and the width was 8 less than that same number.

\[x + 8 \]

3. **ARCHITECTURE** The drawing shows a triangular roof truss with a base measuring the same as its height. The area of the truss is 96 square meters.

Find the height of the truss. 14 m

Find the length and width of the rug? 20 ft and 4 ft

4. **BALLOONING** The function \(f(t) = -16t^2 + 576 \) represents the height of a freely falling ballast bag that starts from rest on a balloon 576 feet above the ground. After how many seconds \(t \) does the ballast bag hit the ground? After 6 seconds

5. **DECORATING** Marvin wants to purchase a rectangular rug. It has an area of 80 square feet. He cannot remember the length and width, but he remembers the length was 8 more than some number and the width was 8 less than that same number.

\[a = 13 \text{ and } b = 5 \]

8-8 Enrichment

Factoring Trinomials of Fourth Degree

Some trinomials of the form \(a^4 + a^2b^2 + b^4 \) can be written as the difference of two squares and then factored.

Example Factor \(4x^4 - 37x^2y^2 + 9y^4 \).

Step 1 Find the square roots of the first and last terms.

\[\sqrt{4x^4} = 2x^2 \]

\[\sqrt{9y^4} = 3y^2 \]

Step 2 Find twice the product of the square roots.

\[2(2x^2)(3y^2) = 12x^2y^2 \]

Step 3 Separate the middle term into two parts. One part is either your answer to Step 2 or its opposite. The other part should be the opposite of a perfect square.

\[-37x^2y^2 = -12x^2y^2 - 25x^2y^2 \]

Step 4 Rewrite the trinomial as the difference of two squares and then factor.

\[4x^4 - 37x^2y^2 + 9y^4 = (4x^4 - 12x^2y^2 + 9y^4) - 25x^2y^2 \]

\[= (2x^2 - 3y^2)^2 - 25x^2y^2 \]

\[= [(2x^2 - 3y^2) + 5xy][(2x^2 - 3y^2) - 5xy] \]

\[= (2x^2 + 5xy - 3y^2)(2x^2 - 5xy - 3y^2) \]

Factor each polynomial.

1. \(x^4 + x^2y^2 + y^4 \)

\[(x^2 + xy + y^2)(x^2 - xy + y^2) \]

2. \(x^4 + x^2 + 1 \)

\[(x^2 + x + 1)(x^2 - x + 1) \]

3. \(9a^4 - 16b^4 + 1 \)

\[(3a^2 + 3a - 1)(3a^2 - 3a - 1) \]

4. \(16a^4 - 17a^2 + 1 \)

\[(4a - 1)(a + 1)(a + 1)(a - 1) \]

5. \(4a^4 - 16a^2 + 1 \)

\[(2a^2 - 3a + 1)(2a^2 - 3a - 1) \]

6. \(9a^4 + 26a^2b^2 + 25b^4 \)

\[(3a^2 + 2ab + 5b^2)(3a^2 - 2ab + 5b^2) \]

7. \(4a^4 - 21a^2y^2 + 9y^4 \)

\[(2x^2 + 3xy - 3y^2)(2x^2 - 3xy + 3y^2) \]

8. \(4a^4 - 29a^2b^2 + 25b^4 \)

\[(2a + 5b)(a - b)(2a - 5b)(a + b) \]
There is a special pattern you can use to factor binomials of the form \(a^2 - b^2\). You can use a spreadsheet to discover this relationship.

Example

Use a spreadsheet to investigate the values of the expressions \((a^2 - b^2), (a - b)(a + b), \) and \((a + b)^2\). What conjecture can you make about the expressions?

Step 1
You will use Columns A and B to enter various values that you choose for \(a\) and \(b\).

Step 2
Enter the formulas for \((a^2 - b^2), (a - b)(a + b), \) and \((a + b)^2\) in Columns C, D, and E, respectively. To enter an exponent, use the symbol \(^n\) followed by the exponent. For example, the square of the value in cell A2 is entered as \(A2^2\).

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>(a^2 - b^2)</td>
<td>((a - b)(a + b))</td>
<td>((a + b)^2)</td>
<td>(...)</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Exercises

1. Enter various values of \(a\) and \(b\) in Columns A and B. Look for a pattern. What do you observe about the expressions? For any values of \(a\) and \(b\), \((a^2 - b^2) = (a - b)(a + b)\).

2. Find the products of \((a - b)^2, (a - b)(a + b), \) and \((a + b)^2\). Do the results verify your conjecture? \((a - b)^2 = a^2 - 2ab + b^2; (a - b)(a + b) = a^2 - b^2; \) and \((a + b)^2 = a^2 + 2ab + b^2\); yes

Use the pattern you observed to factor each binomial.

3. \(m^2 - t^2\) \((m - t)(m + t)\)
4. \(x^2 - 4\) \((x - 2)(x + 2)\)
5. \(y^2 - 16\) \((y - 4)(y + 4)\)
6. \(q^2 - 11\) \((q - 11)(q + 11)\)
7. \(r^2 - 169\) \((r - 13)(r + 13)\)
8. \(b^2 - 1\) \((b - 1)(b + 1)\)
9. \(4x^2 - 1\) \((2x - 1)(2x + 1)\)
10. \(16t^2 - r^2\) \((4t - r)(4t + r)\)
11. \(25x^2 - 81d^2\) \((5x - 9d)(5x + 9d)\)

8-9 Study Guide and Intervention

Perfect Squares

Factor Perfect Square Trinomials

The patterns shown below can be used to factor perfect square trinomials.

Example 1

Determine whether \(16n^2 - 24n + 9\) is a perfect square trinomial. If so, factor it.

Since \(16n^2 = (4n)^2\), the first term is a perfect square.
Since \(9 = 3^2\), the last term is a perfect square.
The middle term is equal to \(2(4n)(3)\).
Therefore, \(16n^2 - 24n + 9\) is a perfect square trinomial.
\(16n^2 - 24n + 9 = (4n)^2 - 2(4n)(3) + 3^2 = (4n - 3)^2\)

Example 2

Factor \(16x^2 - 32x + 15\).
Since 15 is not a perfect square, use a different factoring pattern.
\(16x^2 - 32x + 15 = 16x^2 + 4x + mx + px + 15\)
Write the pattern.
\(16x^2 = 16x^2 - 20x + 15\)
m = 12 and \(p = -20\)
\(16x^2 - 20x + (12x - 15)\) Group terms.
\(4x(4x - 5)(4x - 3)\) Find the GCF.
\((4x - 5)(4x - 3)\) Factor by grouping.
Therefore \(16x^2 - 32x + 15 = (4x - 5)(4x - 3)\).

Exercises

Determine whether each trinomial is a perfect square trinomial. Write yes or no.
If so, factor it.

1. \(x^2 - 16x + 64\) yes; \((-x - 8)(x - 8)\) \(x^2 + 16 + 64\) yes; \((m + 5)(m + 5)\) no

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

4. \(9x^2 + 200y^2\) 5. \(x^2 + 22x + 121\) prime
\(2(7x + 10y)(7x - 10y)\) \((x + 11)^2\) \((9 + y)^2\)
7. \(25x^2 - 10x - 1\) prime \(8. 169 - 28r + r^2\) \(9. 7r^2 - 9x + 2\)
\((10x + 1)(10x - 1)\) \((13 - r)^2\) \((7x - 2)(x - 1)\)
10. \(16m^2 + 48m + 36\) 11. \(16 - 25r^2\) 12. \(b^2 - 166 + 256\)
\((4m + 3)^2\) \((4 + 5a)(4 - 5a)\) prime
13. \(36r^2 - 12x + 1\) 14. \(16a^2 - 40ab + 25b^2\) 15. \(8m^2 - 64m\)
\((6x - 1)^2\) \((4a - 5b)^2\) \(8m(m^2 - 8)\)
8-9 Study Guide and Intervention (continued)

Perfect Squares

Solve Equations with Perfect Squares

Factoring and the Zero Product Property can be used to solve equations that involve repeated factors. The repeated factor gives just one solution to the equation. You may also be able to use the Square Root Property below to solve certain equations.

<table>
<thead>
<tr>
<th>Square Root Property</th>
<th>For any real number a, if $a^2 = b$, then $a = \pm \sqrt{b}$.</th>
</tr>
</thead>
</table>

Example

Solve each equation. Check your solutions.

a. $x^2 - 6x + 9 = 0$

1. Original equation: $x^2 - 6x + 9 = 0$
2. Factor the perfect square trinomial: $(x - 3)^2 = 0$
3. Set repeated factor equal to 0: $x - 3 = 0$
4. Solve: $x = 3$

The solution set is $\{3\}$. Since $3^2 - 6 \cdot 3 + 9 = 0$, the solution checks.

b. $(a - 5)^2 = 64$

1. Original equation: $(a - 5)^2 = 64$
2. Add 5 to each side: $a = 5 \pm 8$
3. Solve each equation: $a = 13$ or $a = -3$

The solution set is $\{-3, 13\}$. Since $(-3 - 5)^2 = 64$ and $(13 - 5)^2 = 64$, the solutions check.

Exercises

Solve each equation. Check your solutions.

1. $x^2 + 4x + 4 = 0 \{−2\}$
2. $16x^2 + 16x + 4 = 0 \{−\frac{1}{2}\}$
3. $25x^2 - 10x + 1 = 0 \{\frac{1}{5}\}$
4. $x^2 + 10x + 25 = 0 \{−5\}$
5. $9x^2 - 6x + 1 = 0 \{\frac{1}{3}\}$
6. $x^2 + x + \frac{1}{4} = 0 \{−\frac{1}{2}\}$
7. $25x^2 + 20x + 4 = 0 \{−\frac{2}{5}\}$
8. $p^2 + 2p + 1 = 49 \{−10, 6\}$
9. $x^2 + 4x + 4 = 64 \{−8, 6\}$
10. $x^2 - 6x + 9 = 25 \{−2, 8\}$
11. $x^2 + 8x + 16 = 1 \{−3, −5\}$
12. $16x^2 + 8y + 1 = 0 \{−\frac{1}{4}\}$
13. $(x + 3)^2 = 49 \{−10, 4\}$
14. $(y + 6)^2 = 1 \{−7, −5\}$
15. $(m - 7)^2 = 49 \{0, 14\}$
16. $(2x + 1)^2 = 1 \{−1, 0\}$
17. $(4x + 3)^2 = 25 \{−2, \frac{1}{2}\}$
18. $(3h - 2)^2 = 4 \{\frac{4}{3}, 0\}$
19. $(x + 3)^2 = 9 \{−1 ± \sqrt{7}\}$
20. $(y - 3)^2 = 6 \{3 ± \sqrt{6}\}$
21. $(m - 2)^2 = 5 \{2 ± \sqrt{5}\}$

Answers

1. $m^2 - 6m + 9$

- Yes; $(m - 3)^2$

2. $p^2 - 14p + 49$

- Yes; $(p - 7)^2$

3. $4d^2 - 4d + 1$

- Yes; $(2d - 1)^2$

4. $2n^2 - 4w + 9$

- No

5. $9n^2 - 30n + 25$

- Yes; $(3n - 5)^2$
8-9 Practice

Perfect Squares

Determine whether each trinomial is a perfect square trinomial. Write yes or no. If so, factor it.

1. \(m^2 + 16m + 64 \)
 yes; \((m + 8)^2\)

2. \(9r^2 - 6r + 1 \)
 yes; \((3r - 1)^2\)

3. \(4p^2 - 20p + 25 \)
 yes; \((2p - 5)^2\)

4. \(16p^2 + 24p + 9 \)
 yes; \((4p + 3)^2\)

5. \(25b^2 - 4b + 16 \)
 no

6. \(4h^2 - 56h + 16 \)
 yes; \((7h - 4)^2\)

Factor each polynomial, if possible. If the polynomial cannot be factored, write prime.

7. \(3p^2 - 147 \)
 \(3(p + 7)(p - 7) \)

8. \(6x^2 + 11x - 35 \)
 \((2x + 7)(3x - 5) \)

9. \(50y^3 - 60y + 18 \)
 \(2(5y - 3)^2 \)

10. \(6t^2 - 14t - 12 \)
 \(2(t^2 - 7t + 6) \)

11. \(30k^2 + 38k + 12 \)
 \(2(5k + 3)(3k + 2) \)

12. \(15b^2 - 24bf + 8f^2 \)
 \(3(2b - f)^2 \)

13. \(14.12h^2 - 60h + 75 \)
 \(3(2h - 5)^2 \)

14. \(16a^2 - 28a^2 \)
 \(7(u - 2m)(u + 2m) \)

15. \(17.6w^2 - 8w - 9 \)
 \((w^2 + 3)(w + 3)(w - 3) \)

16. \(18a^2 + 72bd + 81bd^2 \)
 \((4a + 9d)^2 \)

Solve each equation. Check the solutions.

17. \(44x^2 - 28x = -49 \)
 \(20. \frac{50b^2 + 206 + 2 = 0}{21. \left(\frac{12}{5}\right)^2 - 7 = 0} \)

18. \(\frac{2}{3} + \frac{3}{5} + \frac{1}{9} = 0 \)
 \(\frac{23}{2} - \frac{8}{3} + \frac{3}{25} = 0 \)

19. \(x^2 + 12x + 36 = 25 \)
 \(x^2 + 2x + 12 = -11, -1 \)

20. \(3x^2 - 8x + 16 = 64 \)
 \(26. h^2 + 9 = 3 \)

21. \(-4, 12 \)
 \(27. w^2 - 6w + 9 = 13 \)

22. \(-9 \pm \sqrt{3} \)
 \(3 \pm \sqrt{13} \)

23. \(\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \)
 \(\begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} \)

24. \(\begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} \)
 \(\begin{pmatrix} 3 \\ 5 \\ 6 \end{pmatrix} \)

25. \(\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} \)
 \(\begin{pmatrix} -10 \\ -11 \\ -12 \end{pmatrix} \)

26. \(A = \pi r^2 \), where \(r \) is the radius. If increasing the radius of a circle by 1 inch gives the resulting circle an area of 100\(\pi \) square inches, what is the radius of the original circle? 9 in.

27. \(\begin{pmatrix} 5 \\ 6 \\ 7 \end{pmatrix} \)
 \(\begin{pmatrix} 8 \\ 9 \\ 10 \end{pmatrix} \)

28. \(\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \)
 \(\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \)

29. PICTURE FRAMING Mikaela placed a frame around a print that measures 10 inches by 10 inches. The area of just the frame itself is 89 square inches. What is the width of the frame? 1.5 in.

NAME ___________________________ DATE ___________ PERIOD ___________
8-9 Enrichment

Squaring Numbers: A Shortcut

A shortcut helps you to square a positive two-digit number ending in 5. The method is developed using the idea that a two-digit number may be expressed as $10t + u$. Suppose $u = 5$.

\[
(10t + 5)^2 = (10t + 5)(10t + 5) = 100t^2 + 100t + 25
\]

In words, this formula says that the square of a two-digit number ending in 5 has $t(t + 1)$ in the hundreds place. Then 2 is the tens digit and 5 is the units digit.

Example

Using the formula for $(10t + 5)^2$, find 85^2.

\[
85^2 = 100 \cdot 8 \cdot (8 + 1) + 25 = 7200 + 25 = 7225
\]

Shortcut: First think $8 \cdot 9 = 72$. Then write 25.

Thus, to square a number, such as 85, you can write the product of the tens digit and the next consecutive integer $t + 1$. Then write 25.

Find each of the following using the shortcut.

1. 15^2 225
2. 25^2 625
3. 35^2 1225
4. 45^2 2025
5. 55^2 3025
6. 65^2 4225

7. What is the tens digit in the square of 95? 2

8. What are the first two digits in the square of 75? 56

9. Any three-digit number can be written as $100a + 10b + c$. Square this expression to show that if the last digit of a three-digit number is 5 then the last two digits of the square of the number are 2 and 5.

\[
10,000a^2 + 2000ab + 100ac + 100b^2 + 20bc + c^2 = 10,000a^2 + 2000ab + 1000a + 100b^2 + 10b + 25
\]

The last two digits are not affected by the first five terms.
Chapter 8 Assessment Answer Key

Quiz 1 (Lessons 8-1 and 8-2)
Page 65
1. 2
2. 4
3.
 \(-3x^3 + 4x^2 + 2x + 12; -3\)
4.
 \(-7x^4 + 4x^2 + x - 15; -7\)
5.
 \(3x^2 - 3x + 4\)
6.
 \(3a + 5b\)
7.
 A
8. 9

Quiz 2 (Lesson 8-3, 8-4, and 8-5)
Page 65
1.
 \(2x^2 - 7x - 4\)
2.
 \(6b^3 + 5b^2 + 8b + 16\)
3.
 \(4m^2 + 7m - 2\)
4.
 \(4x^2 - 36y^2\)
5.
 \(a^2 - 9b^2\)
6.
 \(x^2 + 14x + 49\)
7.
 \(12ab(4ab - 1)\)
8.
 \(3(2x^2y - 7y^2w + 8xw)\)
9.
 \(\{-4, \frac{5}{3}\}\)
10.
 \(-11, 0\)
11.
 A

Quiz 3 (Lessons 8-6 and 8-7)
Page 66
1.
 \((a - 3)(a - 7)\)
2.
 \((x - 3)(x + 5)\)
3.
 \((2x + 1)(x + 3)\)
4.
 prime
5.
 C
6.
 \{-3, 9\}
7.
 \{-24, 1\}
8.
 \(\left\{\frac{2}{3}, 3\right\}\)
9.
 \(\left\{-\frac{3}{2}, \frac{2}{5}\right\}\)
10.
 \(-15 \text{ and } -13 \text{ or } 13 \text{ and } 15\)

Quiz 4 (Lesson 8-8 and 8-9)
Page 66
1.
 \(\frac{(a - 5)(a + 5)}{(7x + 8y)(7x - 8y)}\)
2.
 \(\frac{(x + 2)(x - 2)(x + 3)}{(a + 7)^2}\)
3.
 \(\frac{(3z - 1)^2}{2m(2m - 3)^2}\)
4.
 \(-\frac{9}{4}, \frac{9}{4}\)
5.
 \(-\frac{15}{2}, \frac{15}{2}\)
6.
 \(\left\{\frac{1}{4}\right\}\)
7.
 \(5 \pm \sqrt{8}\)
8.
 C
9.
 4 seconds
10.
 \(12xy(3y - 4x)\)
11.
 \((t - 4)(t - 12)\)
12.
 \((2y - 1)(x + 2)\)
13.
 \(3g^3 - 6g^2 + g + 1\)
14.
 \(6y^2 + 7y - 20\)
15.
 \(16m^2 - 40mn + 25n^2\)

Mid-Chapter Test
Page 67
1.
 C
2.
 H
3.
 D
4.
 F
5.
 A
6.
 H
Chapter 8 Assessment Answer Key

Vocabulary Test Form 1
Page 68 Page 69 Page 70

1. C

2. J

Sample answer:
Factoring means writing a number or polynomial as a product of factors.

3. B

4. G

5. A

6. G

7. B

8. F

9. D

10. F

11. A

12. G

13. A

14. J

15. D

16. H

17. B

18. F

19. A

20. G

B: 5 and 7 or -5 and -7
Chapter 8 Assessment Answer Key

<table>
<thead>
<tr>
<th>Form 2A</th>
<th>Page 71</th>
<th>Form 2B</th>
<th>Page 74</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. B</td>
<td></td>
<td>B: 25</td>
<td></td>
</tr>
</tbody>
</table>

B: \((n + 3)(n - 3)(n^2 + 4)\)
Chapter 8 Assessment Answer Key

Form 2C
Page 75

1. \(-4n^2 + 6ny + 13y^2\)

2. \(19m^2 + 2mt + 6t^2\)

3. \(10h^3k^3 - 5h^2k^5 + 20h^3k^4\)

4. \(8x^4 - 2y^4\)

5. \(25c^2 - 40c + 16\)

6. \(5a^2bc(7ac - 9b)\)

7. \((3y - 4)(x + 2)\)

8. \((t - 8)(t - 3)\)

9. \((5y - 3)(2y - 5)\)

10. \(4(2n - 5)(n - 2)\)

11. \(2x^2(x + 3)(x - 3)\)

12. prime

Page 76

13. \(\frac{2^2}{5}\)

14. 6

15. \(\{-\frac{2}{3}, 2\}\)

16. \(\{0, \frac{1}{2}\}\)

17. \(\left\{\frac{1}{2}, 1\right\}\)

18. \(\left\{-\frac{7}{2}, -\frac{1}{2}\right\}\)

19. \(\left\{-\frac{5}{7}, \frac{5}{7}\right\}\)

20. length is 20 ft; width is 12 ft

21. 14 in.

22. length is 6 in.; width is 8 in.

23. \(\frac{1}{2}\) s

24. width is 14 ft; length is 17 ft

25. \(-7\) and \(-35\) or \(7\) and \(35\)

B: \((v + 3)(v - 3)(x^2 + n^2)\)
1. \[4m^2 - 6m + 1\]

2. \[8y^2 - 4y - 9\]

3. \[6x^4y^2 - 15x^3y^3 + 24x^4y^4\]

4. \[9r^4 - 25t^4\]

5. \[25y^2 + 60y + 36\]

6. \[2x^2yz(5 - 11xy)\]

7. \[(y - 2)(2x + 3)\]

8. \[(m + 14)(m - 2)\]

9. \[(5t - 3)(t + 4)\]

10. \[2(3p - 4)(p - 2)\]

11. \[3x^3(x + 5)(x - 5)\]

12. prime

13. \[\{13\}\]

14. \[\{-2\}\]

15. \[\{-5, \frac{3}{4}\}\]

16. \[\{0, \frac{2}{3}\}\]

17. \[\{-1, \frac{1}{3}\}\]

18. \[\{-\frac{1}{2}, \frac{5}{2}\}\]

19. \[\{-\frac{1}{8}, \frac{1}{8}\}\]

20. width is 5 ft

21. 16 in.

22. height is 3 in.

23. \[\frac{3}{4}\] s

24. width is 8 ft; length is 13 ft

25. -6 and -42 or 6 and 42

B: 16
Chapter 8 Assessment Answer Key

Form 3
Page 79

1. $10w^2 + 3w + 4$

2. $10u^2x - 7ux + 6ux^2$

3. $3x^2 - x + 14y$

$\frac{-n^3 - 25n^2 + 12n - 21}{y^2 + 5}$

4. $4x^2y^2z(3x - 6y + 4yz^2)$

$\frac{(2x + 3)(2x - 3) \cdot (y^2 + 5)}{1 \cdot (x - 8)(x + 3)}$

5. $5x - 3)(2x + 7)$

prime

8. $3x(x - 4y)^2$

$\frac{(x + 5)(x - 5) \cdot (3x^2 + 2)}{1 \cdot 5}$

2. $4y^2$

Page 80

15. $8y^2 - 20y - 28$

$\frac{1}{3}m^2 - \frac{11}{6}m + 2$

16. $\begin{cases} 0, \frac{11}{3} \\ \frac{7}{3}, \frac{1}{3} \end{cases}$

17. $\begin{cases} \frac{11}{4} \\ \{-1, 4\} \end{cases}$

18. $\begin{cases} 12 \text{ in.} \times 2 \text{ in.} \times 4 \text{ in.} \\ 15 \text{ ft} \times 12 \text{ ft} \end{cases}$

21. $12, 15$

$\frac{1}{2} \text{ s}$

24. $\begin{cases} \frac{1}{3} \text{ in.} \\ \{-\frac{7}{6}, 0\} \end{cases}$
Chapter 8 Assessment Answer Key

Page 81, Extended-Response Test

Scoring Rubric

<table>
<thead>
<tr>
<th>Score</th>
<th>General Description</th>
<th>Specific Criteria</th>
</tr>
</thead>
</table>
| 4 | **Superior** | - Shows thorough understanding of the concepts of finding factors of integers, factoring polynomials, and using the Zero Product Property to solve equations.
- Uses appropriate strategies to solve problems.
- Computations are correct.
- Written explanations are exemplary.
- Goes beyond requirements of some or all problems. |
| 3 | **Satisfactory** | - Shows an understanding of the concepts of finding factors of integers, factoring polynomials, and using the Zero Product Property to solve equations.
- Uses appropriate strategies to solve problems.
- Computations are mostly correct.
- Written explanations are effective.
- Satisfies all requirements of problems. |
| 2 | **Nearly Satisfactory** | - Shows an understanding of most of the concepts of finding factors of integers, factoring polynomials, and using the Zero Product Property to solve equations.
- May not use appropriate strategies to solve problems.
- Computations are mostly correct.
- Written explanations are satisfactory.
- Satisfies the requirements of most of the problems. |
| 1 | **Nearly Unsatisfactory** | - Final computation is correct.
- No written explanations or work is shown to substantiate the final computation.
- Satisfies minimal requirements of some of the problems. |
| 0 | **Unsatisfactory** | - Shows little or no understanding of most of the concepts of finding factors of integers, factoring polynomials, and using the Zero Product Property to solve equations.
- Does not use appropriate strategies to solve problems.
- Computations are incorrect.
- Written explanations are unsatisfactory.
- Does not satisfy requirements of problems.
- No answer may be given. |
Chapter 8 Assessment Answer Key

Page 81, Extended-Response Test

Sample Answers

In addition to the scoring rubric found on page A37, the following sample answers may be used as guidance in evaluating extended-response assessment items.

1a. The student should recognize that $A = x(x + b)$ is an equation and $x^2 + bx - A$ is a trinomial expression. When the equation is put into standard form, the trinomial expression is one side of the equation. For example, $A = x(x + b)$ is equivalent to $x^2 + bx - A = 0$.

1b. For $x^2 + bx - A$ to factor, there must be factors of $-A$ whose sum is b.

1c. Sample answer: $A = 144$, $b = 10$; $x^2 + 10x - 144 = (x + 18)(x - 8)$

1d. Sample answer: $144 = x(x + 10)$; 144 sq ft; width is 8 ft, length is 18 ft

2a. The student should recognize that both c and h must be positive to be above ground, and since c is the starting height and h is equal to c minus $16t^2$ where t^2 is always positive, h will always be less than or equal to c.

2b. Sample answer: $c = 4$; $\frac{1}{2}$ s

2c. The student should explain that $c = 9$ and $h = 0$ yields a solution set of $\{-\frac{3}{4}, \frac{3}{4}\}$. Since we are considering only the time after the ball is thrown, the ball is only in the air for $\frac{3}{4}$ second. Thus, a ball thrown horizontally at a height of 9 feet cannot stay above the ground for more than 1 second.

3a. Sample answer: Choose a value for x and evaluate $x^2 - 8x + 15$.

\[x^2 - 8x + 15 = 10^2 - 8(10) + 15 = 35 \]

A factorization of 35 is 5×7. Since $x = 10$, $5 = x - 5$ and $7 = x - 3$.

Check the product $(x - 5)(x - 3)$.

\[(x - 5)(x - 3) = x^2 - 8x + 15 \checkmark \]

3b. Sample answer: Choose a value for x and evaluate $2x^2 - 13x - 24$.

\[2x^2 - 13x - 24 = 2(10)^2 - 13(10) - 24 = 46 \]

A factorization of 46 is 2×23. Since $x = 10$, $2 = x - 8$ and $23 = 2x + 3$.

Check the product $(x - 8)(2x + 3)$.

\[(x - 8)(2x + 3) = 2x^2 + 3x - 16x - 24 = 2x^2 - 13x - 24 \checkmark \]

3c. Sample answer: Choose a value for x and evaluate $x^2 - 2x - 8$.

\[x^2 - 2x - 8 = 10^2 - 2(10) - 8 = 72 \]

A factorization of 72 is 6×12. Since $x = 10$, $6 = x - 4$ and $12 = x + 2$.

Check the product $(x - 4)(x + 2)$.

\[(x - 4)(x + 2) = x^2 + 2x - 4x - 8 = x^2 - 2x - 8 \checkmark \]

The student should explain that there are more factors for 72 than for the numbers in the previous parts, thus making the process more difficult in finding the correct factors.

3d. Sample answer: Evaluate

\[x^2 - 2x - 8 \text{ for } x = 5. \]

\[x^2 - 2x - 8 = 5^2 - 2(5) - 8 = 7 \]

The only factorization of 7 is 1×7. Since $x = 5$, $1 = x - 4$ and $7 = (x + 2)$.

Check the product $(x - 4)(x + 2)$.

\[(x - 4)(x + 2) = x^2 + 2x - 4x - 8 = x^2 - 2x - 8 \checkmark \]
Chapter 8 Assessment Answer Key

Standardized Test Practice
Page 82

1. ○ ● ○ ○

2. ● ○ ○ ○

3. ○ ○ ○ ●

4. ● ○ ○ ○

5. ○ ● ○ ○

6. ○ ○ ○ ●

7. ○ ● ○ ○

8. ● ○ ○ ○

9. ○ ○ ○ ●

10. ○ ○ ● ○

Page 83

11. ○ ● ○ ○

12. ○ ○ ● ○

13. ● ○ ○ ○

14. ○ ● ○ ○

15. ○ ● ○ ○

16. ● ○ ○ ○

17. ● ○ ○ ○

18. ○ ○ ○ ●

19.

20.

Answers
Chapter 8 Assessment Answer Key

Standardized Test Practice
Page 84

21. \[y = 2x - 3 \]

22. infinitely many

23. \(\left(\frac{1}{2}, 1 \right) \)

24. \(16x^8y^{12} \)

25. \(24y^2 + 42y^2 - y - 10 \)

26. \(2x^3 - 5x^2 - 11x - 4 \)

27. \(4a^2b^2(3 - 4b) \)

28. \(\left\{ \frac{1}{5}, 1 \right\} \)

29. \((2x + 7y)(2x - 7y) \)

Sample answer:
\(x = \) lesser number,
\(y = \) greater number,
\(x + y = 18 \),

30a. \(3x - y = 10 \)

30b. 11