
Accepted by 11
th

 IEEE LISAT Conference. To be published in Proceedings of IEEE LISAT, May 1, 2015, pp. 1-6

978-1-4577-1343-9/12/$26.00 ©2015 IEEE

A Wireless Tracking System for At-home Medical

Equipment during Natural Disasters

David Li, Member, IEEE

Department of Science

Commack High School

1 Scholar Lane, Commack, NY 11725

Davidli27606@gmail.com

Abstract—Electricity-operated durable medical equipment

(DME), such as ventilators, dialysis machines, and patient

monitoring devices, are life-supporting machines used extensively

by patients at home. While convenient and economical, at-home

use of DME is susceptible to power outages, especially the ones

caused by natural disasters that often occur in large area and for

a long duration. There is little existing technology allowing

hospitals to monitor DME-dependent patients without using the

current infrastructure, such as the landlines, the cell towers,

Ethernet cable or the Internet. Reported herein is a novel

wireless system that utilizes a radio ad hoc network to

automatically report the patient’s information and location, and

the DME information and status to a nearby hospital when a

power outage is detected. This system consists of two parts: a

hospital-based receiving device, called the Base Station node, and

multiple transmitting devices, called User Nodes, each connected

to the DME at patients’ homes. The Base Station and User Nodes

is each built with a Teensy® microcontroller, a GPS receiver

module, and an Xbee® radio implementing the Zigbee® protocol.

Additionally, each User Node contains a status LED and an

internal lithium-ion battery connected by a charge controller.

User Nodes are programmed to obtain the GPS location of the

patient, monitor the DME status, communicate with nearby

nodes, transmit the data and relay information to the Base

Station through the radio ad hoc network the nodes form in the

case of a power outage. The Base Station device is programmed

to receive and convey the information transmitted from the User

Nodes to a nearby hospital’s patient monitoring computer

through a USB connection. This system works without relying on

the infrastructure, and allows hospital staff to know the

information and locations of DME and their users and provide

help needed during power outages.

Keywords-Ad hoc Network, DME, Durable Medical Equipment,

GPS, Radio, Tracker, Tracking System, Wireless, Zigbee, Xbee

I. INTRODUCTION

Durable medical equipment (DME) is any medical device
used at home by patients for monitoring and/or treating
diseases [1]. There are two types of DME: passive equipment
and active equipment, the latter reliant on electricity to operate.
Life-supporting active DME include dialysis machines,
ventilators, oxygen concentrators, etc. [2]. At-home use of
DME is not only convenient and economical, but also leads to
a better quality of life for the patient. In a 2013 survey, the
World Health Organization (WHO) estimated that in Japan

alone, there are 13,000 DME in use, namely 101 DME users
per million population [3]. DME are heavily used in the United
States although a specific number is not available due to
privacy laws [3].

Despite aforementioned benefits, at-home DME are
susceptible to power outages, especially those caused by
natural disasters. During difficult times like this, the DME-
dependent patients had to face the life-threatening situation
because their machines had stopped functioning. While most
at-home DME are equipped with integrated batteries to keep
them functioning during power outages, their rechargeable
batteries typically last only 1 hour with lead-acid batteries and
2-3 hours with newer lithium-ion batteries [4]. Thus, there is a
critical need for a means of communication between the
medical staff at a hospital and patients at home during natural
disasters without needing current infrastructure such as
landlines or cell towers that are often unavailable during
natural disasters. Aware of the severity of this problem, the
Assistant Secretary for Preparedness and Response (ASPR) of
the U.S. Department of Health & Human Services through its
partner, www.innocentive.com, launched a challenge in 2013
to seek ideas that might solve this communication issue [5].

Although there are several commercially available general
purpose trackers or locators [6], [7], and some DME even have
integrated reporting units, none of these are operable when the
infrastructure is disabled, because they all rely on the cell
phone services and/or Internet connectivity. Hence, there needs
to be a means of communication, which does not use the
current infrastructure, between the at-home DME-dependent
patients and the hospital staff during natural disasters. Reported
herein is a novel DME tracking system utilizing a radio ad hoc
network for transmitting data.

II. MATERIALS AND METHODS

A. Materials

The Xbee® shield was purchased from Sparkfun [8]. The

Teensy® 3.1 development board was ordered from PJRC [9].

The GPS shield is a generic version and bought from Ebay.

All other parts and tools were obtained from RadioShack®

and Home Depot®.

The DME tracking system described herein is patent pending.

Accepted by 11
th

 IEEE LISAT Conference. To be published in Proceedings of IEEE LISAT, May 1, 2015, pp. 1-6

978-1-4577-1343-9/12/$26.00 ©2015 IEEE

B. Engineering goal

To solve the communication issue when the infrastructure

is disabled and help DME-dependent patients, it was proposed

to engineer a novel DME tracking and reporting system based

on wireless nodes with radios following the Zigbee® (IEEE

802.15 standard) specifications [10], operating at the

frequency band of 2.4 GHz and consuming little power,

though transmitting at short distances and at low data rates

[11]. This system would comprise of two parts: multiple

transmitting devices located in patients’ homes and connected

to patients’ DME, called User Nodes, for gathering relevant

live data to be transferred to the hospital and one central

receiving device located in a local hospital, called the Base

Station, for collecting the patient and DME information sent

by the User Nodes. The system would have a modular design

and scalable implementation, providing flexibility for further

optimizations (for example, substituting the current radio

module with other radios that have the same interface).

Furthermore, each User Node would also have the feature of

an internal rechargeable battery, charging when power line

voltage is present, at which time the User Nodes are only able

to relay other nodes’ information. When a break of AC power

supply is detected at a certain location, the user node would

send information towards the Base Station in the hospital. The

information includes patient information (i.e., name, age,

disease, type and brand of DME being used, etc.), GPS

location of the patient and DME, and the power outage status

(i.e. how long the DME has been running using battery power

and how much battery life is remaining). All patient data and

information would be encrypted with symmetric-key

encryption so that only the administering hospital could

receive and decrypt the information in compliance of the

HIPAA laws [12].

To make it widely accessible to the hospital and to the

patient, the tracking system would be inexpensive to produce

and maintain, also incurring no monthly fee associated with

the cell phone services.

C. Hardware Design and Assembly

The proposed hardware was based on the Teensy® version

3.1 Development board [9], having an MK20DX256 32-bit

microprocessor based on ARM Cortex-M4 and 256KB of

flash storage and 64KB of RAM. This board has 3 standard

asynchronous serial ports (protocol: 8 data bits, 1 stop bit and

no parity), in addition to a USB programming ports capable of

transmitting data in 4800 Baud increments. These serial ports

were used to communicate with the radio, receive GPS

information and retrieve information from the DME. This

board was chosen due to its easiness of prototyping and

relatively low cost. Additionally, it is programmable with the

C language, which was used to program all User Nodes and

the Base Station.

The radio used to communicate among modules was the

Xbee® Pro Series 1 Point-to-Point device for communicating

with IEEE protocol 802.15.4. It has a rated power output of 1

mW and can transmit 90 m within line of sight, either

broadcasting its information or unicasting to a radio whose

serial number is the same as the set destination address [13].

Moreover, the module inputs and outputs data through a

standard serial interface at 115.2 kilobits per second.

The GPS module used in this prototype is a generic GPS

board that uses the u-blox6 GPS module and interfaces with

the microcontroller through serial interface at 9600 bits/second

[14]. Its horizontal position accuracy is within 2.5 m and

outputs its data with NMEA GPRMC statements, which

includes geographic location and UTC time.

Figure 1A shows the hardware design of the User Node

and Base Station, both using the same assembly. Figure 1B is

a picture of the physical setup of the hardware.

Figure 1A. Hardware design of the User Node and Base Station.

Figure 1B. Physical setup of the hardware.

D. Low Level Software Design

The program for the User Nodes was designed first. In

order to have a platform on which to program the algorithm

for implementing the routing protocol, low level drivers

needed to control the Xbee® radio module and the GPS were

written as the manufacturers either did not provide the driver

code or/and the code was not well documented. After each

driver was created, the driver algorithms were tested for

accuracy and bugs, with each of them being debugged after

being created. Firstly, a generic serial reader code was created

to access the serial interfaces which was able to read the serial

ports for data and output the data in variable stringOut,

containing a maximum amount of characters defined at the

beginning of the code by the constant, MAX_READ. Since the

serial port is asynchronous and the node is without knowledge

of the size of the upcoming information, the Serial was read at

Accepted by 11
th

 IEEE LISAT Conference. To be published in Proceedings of IEEE LISAT, May 1, 2015, pp. 1-6

978-1-4577-1343-9/12/$26.00 ©2015 IEEE

Figure 2. Fundamental data structures used in the routing protocol implementation.

the same rate at which it was being filled, delaying the reading

to accommodate a few characters to fill the 64-Byte Serial

buffer. This is to ensure that the Serial buffer neither

overflows nor becomes prematurely empty, at which point the

reading stops and truncates the other information left in the

Serial buffer. All codes were written modularly to support

customization according to the platform and the usage. The

serial reader code was a dependency for both the Xbee® radio

driver and the GPS radio driver as it read their outputs.

The Xbee® driver code, based on the AT commands of the

Xbee® radio [15], was designed to change the addressing of

the radio and obtain information about the radio, such as its

unique serial number. This would enable Xbee® module to

enter either unicasting or broadcasting mode. The working of

the Xbee® driver code was tested by running the commands

and assessing their effectiveness through software on the

computer released by the Xbee® module’s manufacturer,

which reads parameters of the Xbee® module via the USB

port [16].

The GPS driver code detected the NMEA sentences

transmitted by the GPS module and separated them into a

queue to be processed.

After the driver code were implemented, higher level

functions that used these drivers were created; such as a

function to send a character array (i.e. char*) to a specific

address of Xbee® radio modules. This code was verified by

attempting to send a message to a second node through using

the serial number of the receiving node’s Xbee® serial number

and verifying the text’s integrity. This test was performed at

short distances to lower the chance of the message being lost

in the transmission process.

The code used to parse the GPS data into latitude,

longitude and timestamp was written and it was tested through

obtaining the raw data from the GPS module and parsing them

using a reputable online NMEA decoder [17], with the results

of the written NMEA decoder compared to that online.

E. High Level Software Design and Protocol

Implementation

While there is documented, proprietary software to create a

mesh network using the Xbee® radios known as DigiMesh®

[18], such a protocol for routing was not used for the interest

of providing a modular platform on which other, more

efficient routing protocols could be easily implemented [19].

The algorithm implemented is a greedy geographic routing,

whereby each node polls nearby nodes and the data is sent to

the node closest to the final destination [20]. The algorithm is

stateless and reactive, with the nodes not requiring information

about previous nodes the packet was routed through and also

dynamically routed. However, due to the modularity of the

program, the routing algorithm can be easily changed.

Following the routing protocol, three types of information

packets were used to perform the routing: the Request packet,

the Reply packet, and the Data packet; which were in the form

of a struct instance that was cast into a string before sending.

The data structures of the three packets are shown in Figure 2.

Because some of the parameters in the packets may add

null characters (i.e. byte value of 0) to the data, during the

conversion of each struct object into a character sequence to

be sent to other nodes, the data in the structs alone would not

be sent completely because the streaming of data by default

ends with the 0 character. Thus, before the sending of any

packets, a function is used to scan each struct for 0 values and

replace them with another character that is not present

anywhere else in the struct. Then, the encoded sequence is

wrapped by prepending two characters to it: the character

replacing the 0 characters in the original string and an arbitrary

character that was decided to be “|”, or ASCII character

number 124. Thus, the final wrapped packet is in the form of

“<r>|<packet>”, where <r> is the replacement character

and <packet> is the final encoded packet. Similarly, a

parsing algorithm will scan from the beginning of the string

for the first occurrence of the “|” character and undo the

replacement of the 0s, thus recreating the original packet.
A novel feature of this algorithm is the sorting of the

packets and the verifying of their integrity. Each struct

contains two elements constant across all objects of the type

namely, packetType and magicNumber. The

packetType shows the type of packet being decoded, being

0 for a Request packet, 1 for a Reply packet and 2 for a Data

packet. Additionally, the magicNumber is a constant that is

set at the beginning of the program and can vary among

hospitals. The purpose of the magic number element is not

only to create separate channels of communication (i.e. a node

will not respond unless the magic number of the received

packet is equal to its preset magic number), but it is also used

to differentiate any received packet among the three types. The

separating of received packets by packet type is achieved by

casting the data into each of the 3 packet types and testing

whether the magicNumber and packetType elements

match for the given packet type.

typedef struct
RequestPacket{
 uint32_t packetType;
 uint32_t myHaddress;
 uint32_t myLaddress;
 uint32_t
magicNumber;
}
RequestPacket;

typedef struct DataPacket{
 uint32_t packetType;
 uint32_t myHaddress;
 uint32_t myLaddress;
 float Latitude;
 float Longitude;
 float destinationLatitude,
 float destinationLongitude;
 char data[256];
 uint32_t magicNumber;
}
DataPacket;

typedef struct
ReplyPacket{
 uint32_t packetType;
 uint32_t myHaddress;
 uint32_t myLaddress;
 float Latitude;
 float Longitude;
 uint32_t
magicNumber;
}
ReplyPacket;

Accepted by 11
th

 IEEE LISAT Conference. To be published in Proceedings of IEEE LISAT, May 1, 2015, pp. 1-6

978-1-4577-1343-9/12/$26.00 ©2015 IEEE

The algorithm implemented runs continuously through a

loop and polls the inputs and outputs. It was planned and

implemented through the high level functions. Figure 3 is an

overview of the algorithm, including the flags and variables.

Variables and Constants:
stage = 0 when the node is not busy with any routing or sending of data

stage = 2 when the node is waiting for a packet

stage = 3 when there is a data packet to send and the node has sent out a
request packet

stage = 4 when node is waiting for replies to its request packet

stage = 5 when the node has received request packets and has found a
forwarder.

REPLY_DELAY is the number of milliseconds node waits for replies.

Figure 3. An overview of the algorithm.

F. Power Consumption Measurement

To measure the power consumption of the DME tracking

device, one node was connected in series with nine 1Ω ± 5%

resistors, connected such that they are in 3 parallel groups of 3

series resistors with a final equivalent resistance of 1Ω ± 5%.

While not decreasing the error, this arrangement was used to

narrow the distribution of possible values towards the mean

(i.e. create a higher probability that the resistor is closer to its

marked value). Using an ATMEGA328-based microcontroller,

the voltage across the resistive load was measured to the

nearest millivolt and outputted through the USB serial port at a

5-ms interval. Simultaneously, the node performed either a

standard data transmission or a GPS updating, in which it

updates the latitude and longitude values, in addition to the

UTC time based on NMEA sentences from the GPS module.

The node in each of the tests was powered by a regulated 5V

source. The wiring diagram of power consumption test was

shown in Figure 4.

Figure 4. Wiring diagram of power consumption test.

G. Field Test

In order to ascertain the functionality of the routing

protocol, as well as to determine the time used to relay the

data packet, a field test was conducted, in which 5 User Nodes

and 1 Base Station were placed linearly at a distance 90 meters

apart from each other such that each node could only receive

and transmit to adjacent nodes (Figure 5). The distance of 90

meters was used based on the radio range of the Xbee®

Figure 5. Experimental setup in field test.

module. The nodes were each tested such that they could only

transmit to their immediate neighbors.

Additionally, the software of each node was modified by

adding in a timestamp parameter into each of the data

structures. This timestamp was used to collect information

about the length of time taken for each transmission. This

timestamp information was collected from the GPS module.

The getGPS function was slightly modified to also record

and update the UTC time variable in the program. The UTC

time was found to the nearest second on the start of the second

as the GPS module only outputs data on the beginning of

every second. Since the GPS is read every 60 seconds, there

needed to be a function written and tested to interpolate the

exact UTC time, in addition to a milliseconds extension, to

accurately record the time taken for information to be

transferred. The time interpolation function takes into account

the time interval recorded by the Teensy® since the last

updating of the UTC time, and adds the time to the UTC time

and the milliseconds extension. To test the accuracy of the

interpolated time, two nodes were loaded with the same

Figure 6. UTC time measurements from 2 nodes to verify the relative

accuracy of the time interpolation function.

program, and were programmed to output their exact

interpolated time via USB serial onto separate computers.

Then, the second computer was connected to via remote

desktop with a known latency such that the two serial

Accepted by 11
th

 IEEE LISAT Conference. To be published in Proceedings of IEEE LISAT, May 1, 2015, pp. 1-6

978-1-4577-1343-9/12/$26.00 ©2015 IEEE

Figure 7. Power drawn from the User Node for idling, relaying packets, and receiving GPS.

windows were adjacent on a screen. Multiple screenshots of

the two adjacent windows verified that, compensating for

remote desktop latency, the two nodes displayed the same time,

shown in Figure 6.

H. Network Test

After determining that the transmissions were reasonable,

it was decided to test the implementation on the large scale

with many nodes through an independently written simulation

of the nodes implemented in the C language. This program

was written to calculate the packet delivery ratio of an ad hoc

network implementing the Most Forward in Radius protocol

given the node density (1/m
2
), range of each radio (m), and

distance from origin node to the Base Station (m). The

program calculates the value by simulating the routing of data

5,000 times, and returning the ratio between successes and

total transmissions.

The parameters used for testing were as follows:
(a) The distance from origin node to the Base Station is 8

km, greater than the mean distance from a patient to its
closest hospital [21].

(b) The range of each radio was varied from 1 km to 8 km,
not including 8 km.

(c) The density of User Nodes/km
2
 is dependent on

demographics, but reasonable estimates for high,
medium, and low density situations were 10/km

2
,

1/km
2
 and 0.2/km

2
, respectively.

The testing was performed with a tester function written in

PHP script that initialized and called the main network

simulator program with the parameters, and incremented the

transmission range by 0.1 km. At locations where the values

change, the data was collected in more details, with the

transmission range being incremented by 0.01 km.

III. RESULTS AND DISCUSSION

A. Hardware Power Consumption Test Results

The power drawn over time was calculated through

 and , with total current equaling load

current. While the voltage across the test resistor was not

negligible, such difference did not impact the measured results,

as the nodes are powered by a 3.3V regulator, and thus would

not change current with the input voltage above the 4.5V

threshold voltage of the 3.3V regulator.

The approximate power drawn was determined by finding

E = and dividing by ∆time. Figure 7 shows the

power drawn from the User Node for idling, relaying packets,

and receiving GPS. Table 1 shows the power drawn and time

for each operation. The power consumptions for idling,

relaying/transmitting data, and receiving data are 0.76 W, 0.78

W, and 0.92 W, respectively. The times needed for

relaying/transmitting data and receiving data are 23.75 s and

0.65 s, respectively.

TABLE I. POWER DRAWN AND TIME FOR EACH OPERATION

Operation Power ∆Time

Idle 0.76W -

Relay or Transmit Patient Data 0.78W 23.75s

Receive GPS 0.92W 0.65s

According to the above results, the prototype power

consumption was reasonable and these measurements can be

used for optimizing the routing algorithm in the future.

B. Field Test Results

The results from the field simulation test were summarized

in Table 2. The transmission was successful and time for each

hop was averaged at 20.14 seconds.

TABLE II. TIMES OF TRANSMISSIONS

Hop# 1 2 3 4 5 Average

Cumulative

time (s)

20.09 40.24 60.38 80.53 100.68

Time for
each hop (s)

20.09 20.15 20.15 20.15 20.15 20.14

The field test not only shows that the routing algorithm

could be viably implemented, but also shows the modularity of

the software, as the data structures were modified without

needing to modify any other parameters.

Accepted by 11
th

 IEEE LISAT Conference. To be published in Proceedings of IEEE LISAT, May 1, 2015, pp. 1-6

C. Network Test Results

Figure 8 shows the results of probability of transmission or

packet delivery ratio (%) vs. transmission range of User Nodes

(km) for high, medium, and low density network situations.

Figure 8. Packet Delivery Ratio (%) vs. Transmission Range of User Nodes

(km) for high, medium and low density network conditions.

It was found that the routing implementation could work

for all demographics, though is much less effective at lower

densities, such as 0.2 users/km
2
. To find the radio transmission

ranges needed for the network, the highest value for

transmission range whose packet delivery ratio was below

99% was found and was 3.13 km, 4.70 km, and 7.15 km for

densities of 10 users/km
2
, 1 user/km

2
 and 0.2 users/km

2
,

respectively. In practice, software used by the hospital staff at

the time of User Node registration may be able to determine

whether extra auxiliary nodes nearby the User Nodes should

be implemented to ensure that the node is connected with the

remainder of the network.

It was determined that the model is accurate. Additionally,

it is dimensionally valid.

IV. CONCLUSION

Given testing data, it was found that the prototype design of

the DME tracking system was feasible to implement and

would meet the requirement for securely transmitting patient

data, location information, and the status of DME to a nearby

hospital during power outages. Although the maximum radio

range for the current pilot prototype was found to be 90 m, the

advantage of modular design allows this proof-of-concept

system to be easily scalable by simply employing more

powerful radio modules or having specially placed forwarding

nodes to facilitate the forwarding of information from more

distant homes. In a medium patient density situation, for

instance, a radio with an indirect (i.e. non line-of-sight) range

of >4.70 km could be employed. Additionally, the

implementation of this DME tracking system is relatively

inexpensive, utilizing commercially available low cost

general-purpose microcontrollers and general-purpose radios.

When produced in one circuit in mass production, the cost will

be even lowered.

This novel DME tracking system provides a critical link

between the DME-dependent patients and the hospital during

natural disasters. Further research and optimization of this

system is underway.

ACKNOWLEDGMENT

Assistance and advice from my research teachers Mr.

Richard Kurtz and Dr. Lorraine Solomon are greatly

acknowledged. Thanks also go to Drs. Barbara and Frederick

Kruger of IEEE, Prof. Xin Wang and Mr. Jose Cordova of

Stony Brook University, Mr. Steven Hartman of Sterling

Medical Devices, and Mrs. Alison Offerman-Celentano of

Commack School District for helpful discussions and their

suggestions and support.

REFERENCES

[1] Durable medical equipment.
http://en.wikipedia.org/wiki/Durable_medical_equipment

[2] National Coverage Determination (NCD) for Durable Medical
Equipment Reference List (280.1). http://www.cms.gov/medicare-
coverage-database/details/ncd-
details.aspx?NCDId=190&ncdver=2&NCAId=27&NcaName=Electrost
imulation+for+Wounds&IsPopup=y&bc=AAAAAAAAAgAAAA%3D%3
D&

[3] Baseline country survey on medical devices, 2013 update: Medical
EquipmentTotal density per million population computed tomography.
http://gamapserver.who.int/gho/interactive_charts/health_technologies/
medical_equipment/atlas.html

[4] B. Norman. What Will You Do if the Power Goes Out?
http://alsn.mda.org/article/what-will-you-do-if-power-goes-out

[5] HHS Press Office. HHS selects winners in idea challenge for emergency
response. http://www.hhs.gov/news/press/2014pres/02/20140220a.html

[6] GPS Trackers for Today’s World. http://www.pocketfinder.com/

[7] Zoombak Personal GPS Locators. The next generation Zoombak is
eZoom. http://www.securusgps.com/zoombak.aspx

[8] SparkFun Xbee shield. https://www.sparkfun.com/products/12847

[9] Teensy USB Development Board. https://www.pjrc.com/teensy/

[10] ZigBee® Alliance. http://www.zigbee.org/

[11] ZigBee. http://en.wikipedia.org/wiki/ZigBee

[12] Health Information Privacy. http://www.hhs.gov/ocr/privacy/

[13] Xbee® 802.15.4. http://www.digi.com/products/wireless-wired-
embedded-solutions/zigbee-rf-modules/point-multipoint-rfmodules/xbee-
series1-module#specs

[14] NEO-6 u-blox 6 GPS Modules. http://www.u-
blox.com/images/downloads/Product_Docs/NEO-
6_DataSheet_(GPS.G6-HW-09005).pdf

[15] Xbee Command Reference Tables. http://examples.digi.com/wp-
content/uploads/2012/07/XBee_ZB_ZigBee_AT_Commands.pdf

[16] XCTU. http://www.digi.com/products/wireless-wired-embedded-
solutions/zigbee-rf-modules/xctu

[17] Online NMEA Tools. http://freenmea.net/

[18] Xbee® DigiMesh® 2.4. http://www.digi.com/products/wireless-wired-
embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-
digimesh-2-4#overview

[19] X. Xiang, X. Wang, and Z. Zhou, Self-adaptive on-demand geographic
routing for mobile ad hoc networks. IEEE Transactions on Mobile
Computing, 11(9), Page(s): 1572-1586, Sept, 2012.

[20] Geographic routing. http://en.wikipedia.org/wiki/Geographic_routing

[21] J. Nicholl, J. West, S. Goodacre, and J. Turner, The relationship between
distance to hospital and patient mortality in emergencies: an
observational study. Emerg. Med. J., 24(9), Page(s): 665–668, Sept,
2007.

