
Accepted by 11
th

 IEEE LISAT Conference. To be published in Proceedings of IEEE LISAT, May 1, 2015, pp. 1-6 

 

978-1-4577-1343-9/12/$26.00 ©2015 IEEE 

A Wireless Tracking System for At-home Medical 

Equipment during Natural Disasters  

David Li, Member, IEEE 

Department of Science 

Commack High School 

1 Scholar Lane, Commack, NY 11725 

Davidli27606@gmail.com  

 

 
Abstract—Electricity-operated durable medical equipment 

(DME), such as ventilators, dialysis machines, and patient 

monitoring devices, are life-supporting machines used extensively 

by patients at home. While convenient and economical, at-home 

use of DME is susceptible to power outages, especially the ones 

caused by natural disasters that often occur in large area and for 

a long duration. There is little existing technology allowing 

hospitals to monitor DME-dependent patients without using the 

current infrastructure, such as the landlines, the cell towers, 

Ethernet cable or the Internet. Reported herein is a novel 

wireless system that utilizes a radio ad hoc network to 

automatically report the patient’s information and location, and 

the DME information and status to a nearby hospital when a 

power outage is detected. This system consists of two parts: a 

hospital-based receiving device, called the Base Station node, and 

multiple transmitting devices, called User Nodes, each connected 

to the DME at patients’ homes. The Base Station and User Nodes 

is each built with a Teensy® microcontroller, a GPS receiver 

module, and an Xbee® radio implementing the Zigbee® protocol. 

Additionally, each User Node contains a status LED and an 

internal lithium-ion battery connected by a charge controller. 

User Nodes are programmed to obtain the GPS location of the 

patient, monitor the DME status, communicate with nearby 

nodes, transmit the data and relay information to the Base 

Station through the radio ad hoc network the nodes form in the 

case of a power outage. The Base Station device is programmed 

to receive and convey the information transmitted from the User 

Nodes to a nearby hospital’s patient monitoring computer 

through a USB connection. This system works without relying on 

the infrastructure, and allows hospital staff to know the 

information and locations of DME and their users and provide 

help needed during power outages. 

Keywords-Ad hoc Network, DME, Durable Medical Equipment, 

GPS, Radio, Tracker, Tracking System, Wireless, Zigbee,  Xbee 

I. INTRODUCTION 

Durable medical equipment (DME) is any medical device 
used at home by patients for monitoring and/or treating 
diseases [1]. There are two types of DME: passive equipment 
and active equipment, the latter reliant on electricity to operate. 
Life-supporting active DME include dialysis machines, 
ventilators, oxygen concentrators, etc. [2]. At-home use of 
DME is not only convenient and economical, but also leads to 
a better quality of life for the patient. In a 2013 survey, the 
World Health Organization (WHO) estimated that in Japan 

alone, there are 13,000 DME in use, namely 101 DME users 
per million population [3]. DME are heavily used in the United 
States although a specific number is not available due to 
privacy laws [3].  

Despite aforementioned benefits, at-home DME are 
susceptible to power outages, especially those caused by 
natural disasters. During difficult times like this, the DME-
dependent patients had to face the life-threatening situation 
because their machines had stopped functioning. While most 
at-home DME are equipped with integrated batteries to keep 
them functioning during power outages, their rechargeable 
batteries typically last only 1 hour with lead-acid batteries and 
2-3 hours with newer lithium-ion batteries [4]. Thus, there is a 
critical need for a means of communication between the 
medical staff at a hospital and patients at home during natural 
disasters without needing current infrastructure such as 
landlines or cell towers that are often unavailable during 
natural disasters. Aware of the severity of this problem, the 
Assistant Secretary for Preparedness and Response (ASPR) of 
the U.S. Department of Health & Human Services through its 
partner, www.innocentive.com, launched a challenge in 2013 
to seek ideas that might solve this communication issue [5].  

Although there are several commercially available general 
purpose trackers or locators [6], [7], and some DME even have 
integrated reporting units, none of these are operable when the 
infrastructure is disabled, because they all rely on the cell 
phone services and/or Internet connectivity. Hence, there needs 
to be a means of communication, which does not use the 
current infrastructure, between the at-home DME-dependent 
patients and the hospital staff during natural disasters. Reported 
herein is a novel DME tracking system utilizing a radio ad hoc 
network for transmitting data. 

II. MATERIALS AND METHODS 

A. Materials 

The Xbee® shield was purchased from Sparkfun [8]. The 

Teensy® 3.1 development board was ordered from PJRC [9]. 

The GPS shield is a generic version and bought from Ebay. 

All other parts and tools were obtained from RadioShack® 

and Home Depot®. 

The DME tracking system described herein is patent pending. 
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B. Engineering goal 

To solve the communication issue when the infrastructure 

is disabled and help DME-dependent patients, it was proposed 

to engineer a novel DME tracking and reporting system based 

on wireless nodes with radios following the Zigbee® (IEEE 

802.15 standard) specifications [10], operating at the 

frequency band of 2.4 GHz and consuming little power, 

though transmitting at short distances and at low data rates 

[11]. This system would comprise of two parts: multiple 

transmitting devices located in patients’ homes and connected 

to patients’ DME, called User Nodes, for gathering relevant 

live data to be transferred to the hospital and one central 

receiving device located in a local hospital, called the Base 

Station, for collecting the patient and DME information sent 

by the User Nodes. The system would have a modular design 

and scalable implementation, providing flexibility for further 

optimizations (for example, substituting the current radio 

module with other radios that have the same interface). 

Furthermore, each User Node would also have the feature of 

an internal rechargeable battery, charging when power line 

voltage is present, at which time the User Nodes are only able 

to relay other nodes’ information. When a break of AC power 

supply is detected at a certain location, the user node would 

send information towards the Base Station in the hospital. The 

information includes patient information (i.e., name, age, 

disease, type and brand of DME being used, etc.), GPS 

location of the patient and DME, and the power outage status 

(i.e. how long the DME has been running using battery power 

and how much battery life is remaining). All patient data and 

information would be encrypted with symmetric-key 

encryption so that only the administering hospital could 

receive and decrypt the information in compliance of the 

HIPAA laws [12]. 

To make it widely accessible to the hospital and to the 

patient, the tracking system would be inexpensive to produce 

and maintain, also incurring no monthly fee associated with 

the cell phone services.  

C. Hardware Design and Assembly 

The proposed hardware was based on the Teensy® version 

3.1 Development board [9], having an MK20DX256 32-bit 

microprocessor based on ARM Cortex-M4 and 256KB of 

flash storage and 64KB of RAM. This board has 3 standard 

asynchronous serial ports (protocol: 8 data bits, 1 stop bit and 

no parity), in addition to a USB programming ports capable of 

transmitting data in 4800 Baud increments. These serial ports 

were used to communicate with the radio, receive GPS 

information and retrieve information from the DME. This 

board was chosen due to its easiness of prototyping and 

relatively low cost. Additionally, it is programmable with the 

C language, which was used to program all User Nodes and 

the Base Station. 

The radio used to communicate among modules was the 

Xbee® Pro Series 1 Point-to-Point device for communicating 

with IEEE protocol 802.15.4. It has a rated power output of 1 

mW and can transmit 90 m within line of sight, either 

broadcasting its information or unicasting to a radio whose 

serial number is the same as the set destination address [13]. 

Moreover, the module inputs and outputs data through a 

standard serial interface at 115.2 kilobits per second. 

The GPS module used in this prototype is a generic GPS 

board that uses the u-blox6 GPS module and interfaces with 

the microcontroller through serial interface at 9600 bits/second 

[14]. Its horizontal position accuracy is within 2.5 m and 

outputs its data with NMEA GPRMC statements, which 

includes geographic location and UTC time. 

Figure 1A shows the hardware design of the User Node 

and Base Station, both using the same assembly. Figure 1B is 

a picture of the physical setup of the hardware. 

 

 
Figure 1A. Hardware design of the User Node and Base Station.  

 

 
Figure 1B. Physical setup of the hardware.  
 

D. Low Level Software Design 

The program for the User Nodes was designed first. In 

order to have a platform on which to program the algorithm 

for implementing the routing protocol, low level drivers 

needed to control the Xbee® radio module and the GPS were 

written as the manufacturers either did not provide the driver 

code or/and the code was not well documented. After each 

driver was created, the driver algorithms were tested for 

accuracy and bugs, with each of them being debugged after 

being created. Firstly, a generic serial reader code was created 

to access the serial interfaces which was able to read the serial 

ports for data and output the data in variable stringOut, 

containing a maximum amount of characters defined at the 

beginning of the code by the constant, MAX_READ. Since the 

serial port is asynchronous and the node is without knowledge 

of the size of the upcoming information, the Serial was read at 
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Figure 2. Fundamental data structures used in the routing protocol implementation. 

 

the same rate at which it was being filled, delaying the reading 

to accommodate a few characters to fill the 64-Byte Serial 

buffer. This is to ensure that the Serial buffer neither 

overflows nor becomes prematurely empty, at which point the 

reading stops and truncates the other information left in the 

Serial buffer. All codes were written modularly to support 

customization according to the platform and the usage. The 

serial reader code was a dependency for both the Xbee® radio 

driver and the GPS radio driver as it read their outputs.  

The Xbee® driver code, based on the AT commands of the 

Xbee® radio [15], was designed to change the addressing of 

the radio and obtain information about the radio, such as its 

unique serial number. This would enable Xbee® module to 

enter either unicasting or broadcasting mode. The working of 

the Xbee® driver code was tested by running the commands 

and assessing their effectiveness through software on the 

computer released by the Xbee® module’s manufacturer, 

which reads parameters of the Xbee® module via the USB 

port [16].
 

The GPS driver code detected the NMEA sentences 

transmitted by the GPS module and separated them into a 

queue to be processed. 

After the driver code were implemented, higher level 

functions that used these drivers were created; such as a 

function to send a character array (i.e. char*) to a specific 

address of Xbee® radio modules. This code was verified by 

attempting to send a message to a second node through using 

the serial number of the receiving node’s Xbee® serial number 

and verifying the text’s integrity. This test was performed at 

short distances to lower the chance of the message being lost 

in the transmission process.  

The code used to parse the GPS data into latitude, 

longitude and timestamp was written and it was tested through 

obtaining the raw data from the GPS module and parsing them 

using a reputable online NMEA decoder [17], with the results 

of the written NMEA decoder compared to that online. 

E.  High Level Software Design and Protocol 

Implementation 

While there is documented, proprietary software to create a 

mesh network using the Xbee® radios known as DigiMesh® 

[18], such a protocol for routing was not used for the interest 

of providing a modular platform on which other, more 

efficient routing protocols could be easily implemented [19].  

The algorithm implemented is a greedy geographic routing, 

whereby each node polls nearby nodes and the data is sent to 

the node closest to the final destination [20]. The algorithm is 

stateless and reactive, with the nodes not requiring information 

about previous nodes the packet was routed through and also 

dynamically routed. However, due to the modularity of the 

program, the routing algorithm can be easily changed. 

Following the routing protocol, three types of information 

packets were used to perform the routing: the Request packet, 

the Reply packet, and the Data packet; which were in the form 

of a struct instance that was cast into a string before sending.  

The data structures of the three packets are shown in Figure 2. 

Because some of the parameters in the packets may add 

null characters (i.e. byte value of 0) to the data, during the 

conversion of each struct object into a character sequence to 

be sent to other nodes, the data in the structs alone would not 

be sent completely because the streaming of data by default 

ends with the 0 character. Thus, before the sending of any 

packets, a function is used to scan each struct for 0 values and 

replace them with another character that is not present 

anywhere else in the struct. Then, the encoded sequence is 

wrapped by prepending two characters to it: the character 

replacing the 0 characters in the original string and an arbitrary 

character that was decided to be “|”, or ASCII character 

number 124. Thus, the final wrapped packet is in the form of 

“<r>|<packet>”, where <r> is the replacement character 

and <packet> is the final encoded packet. Similarly, a 

parsing algorithm will scan from the beginning of the string 

for the first occurrence of the “|” character and undo the 

replacement of the 0s, thus recreating the original packet. 
A novel feature of this algorithm is the sorting of the 

packets and the verifying of their integrity. Each struct 

contains two elements constant across all objects of the type 

namely, packetType and magicNumber. The 

packetType shows the type of packet being decoded, being 

0 for a Request packet, 1 for a Reply packet and 2 for a Data 

packet. Additionally, the magicNumber is a constant that is 

set at the beginning of the program and can vary among 

hospitals. The purpose of the magic number element is not 

only to create separate channels of communication (i.e. a node 

will not respond unless the magic number of the received 

packet is equal to its preset magic number), but it is also used 

to differentiate any received packet among the three types. The 

separating of received packets by packet type is achieved by 

casting the data into each of the 3 packet types and testing 

whether the magicNumber and packetType elements 

match for the given packet type. 

typedef struct 
RequestPacket{  
  uint32_t packetType; 
  uint32_t myHaddress;   
  uint32_t myLaddress; 
  uint32_t 
magicNumber;  
} 
RequestPacket;  

typedef struct DataPacket{  
  uint32_t packetType; 
  uint32_t myHaddress;   
  uint32_t myLaddress; 
  float Latitude;  
  float Longitude; 
  float destinationLatitude,   
  float destinationLongitude; 
  char data[256]; 
  uint32_t magicNumber; 
} 
DataPacket; 

typedef struct 
ReplyPacket{  
  uint32_t packetType;  
  uint32_t myHaddress;  
  uint32_t myLaddress; 
  float Latitude;  
  float Longitude;  
  uint32_t 
magicNumber;  
} 
ReplyPacket; 
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The algorithm implemented runs continuously through a 

loop and polls the inputs and outputs. It was planned and 

implemented through the high level functions. Figure 3 is an 

overview of the algorithm, including the flags and variables. 
 

 
 
Variables and Constants: 
stage = 0 when the node is not busy with any routing or sending of data 

stage = 2 when the node is waiting for a packet 

stage = 3 when there is a data packet to send and the node has sent out a 
request packet 

stage = 4 when node is waiting for replies to its request packet 

stage = 5 when the node has received request packets and has found a 
forwarder. 

REPLY_DELAY is the number of milliseconds node waits for replies. 
 

Figure 3. An overview of the algorithm.  

F. Power Consumption Measurement 

To measure the power consumption of the DME tracking 

device, one node was connected in series with nine 1Ω ± 5% 

resistors, connected such that they are in 3 parallel groups of 3 

series resistors with a final equivalent resistance of 1Ω ± 5%. 

While not decreasing the error, this arrangement was used to 

narrow the distribution of possible values towards the mean 

(i.e. create a higher probability that the resistor is closer to its 

marked value). Using an ATMEGA328-based microcontroller, 

the voltage across the resistive load was measured to the 

nearest millivolt and outputted through the USB serial port at a 

5-ms interval. Simultaneously, the node performed either a 

standard data transmission or a GPS updating, in which it 

updates the latitude and longitude values, in addition to the 

UTC time based on NMEA sentences from the GPS module. 

The node in each of the tests was powered by a regulated 5V 

source. The wiring diagram of power consumption test was 

shown in Figure 4. 

 

 
Figure 4. Wiring diagram of power consumption test. 

G. Field Test 

In order to ascertain the functionality of the routing 

protocol, as well as to determine the time used to relay the 

data packet, a field test was conducted, in which 5 User Nodes 

and 1 Base Station were placed linearly at a distance 90 meters 

apart from each other such that each node could only receive 

and transmit to adjacent nodes (Figure 5). The distance of 90 

meters was used based on the radio range of the Xbee®  

 

 
Figure 5. Experimental setup in field test. 
 

module. The nodes were each tested such that they could only 

transmit to their immediate neighbors. 

Additionally, the software of each node was modified by 

adding in a timestamp parameter into each of the data 

structures. This timestamp was used to collect information 

about the length of time taken for each transmission. This 

timestamp information was collected from the GPS module. 

The getGPS function was slightly modified to also record 

and update the UTC time variable in the program. The UTC 

time was found to the nearest second on the start of the second 

as the GPS module only outputs data on the beginning of 

every second. Since the GPS is read every 60 seconds, there 

needed to be a function written and tested to interpolate the 

exact UTC time, in addition to a milliseconds extension, to 

accurately record the time taken for information to be 

transferred. The time interpolation function takes into account 

the time interval recorded by the Teensy® since the last 

updating of the UTC time, and adds the time to the UTC time 

and the milliseconds extension. To test the accuracy of the 

interpolated time, two nodes were loaded with the same  

 

 
 
Figure 6. UTC time measurements from 2 nodes to verify the relative 

accuracy of the time interpolation function. 

 

program, and were programmed to output their exact 

interpolated time via USB serial onto separate computers. 

Then, the second computer was connected to via remote 

desktop with a known latency such that the two serial 
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Figure 7. Power drawn from the User Node for idling, relaying packets, and receiving GPS. 

 

windows were adjacent on a screen. Multiple screenshots of 

the two adjacent windows verified that, compensating for 

remote desktop latency, the two nodes displayed the same time, 

shown in Figure 6. 

H. Network Test 

After determining that the transmissions were reasonable, 

it was decided to test the implementation on the large scale 

with many nodes through an independently written simulation 

of the nodes implemented in the C language. This program 

was written to calculate the packet delivery ratio of an ad hoc 

network implementing the Most Forward in Radius protocol 

given the node density (1/m
2
), range of each radio (m), and 

distance from origin node to the Base Station (m). The 

program calculates the value by simulating the routing of data 

5,000 times, and returning the ratio between successes and 

total transmissions. 

The parameters used for testing were as follows: 
(a) The distance from origin node to the Base Station is 8 

km, greater than the mean distance from a patient to its 
closest hospital [21]. 

(b) The range of each radio was varied from 1 km to 8 km, 
not including 8 km. 

(c) The density of User Nodes/km
2
 is dependent on 

demographics, but reasonable estimates for high, 
medium, and low density situations were 10/km

2
, 

1/km
2
 and 0.2/km

2
, respectively. 

The testing was performed with a tester function written in 

PHP script that initialized and called the main network 

simulator program with the parameters, and incremented the 

transmission range by 0.1 km. At locations where the values 

change, the data was collected in more details, with the 

transmission range being incremented by 0.01 km. 

III. RESULTS AND DISCUSSION 

A. Hardware Power Consumption Test Results 

The power drawn over time was calculated through  

 and  , with total current equaling load 

current. While the voltage across the test resistor was not 

negligible, such difference did not impact the measured results, 

as the nodes are powered by a 3.3V regulator, and thus would 

not change current with the input voltage above the 4.5V 

threshold voltage of the 3.3V regulator. 

The approximate power drawn was determined by finding 

E =  and dividing by ∆time. Figure 7 shows the 

power drawn from the User Node for idling, relaying packets, 

and receiving GPS. Table 1 shows the power drawn and time 

for each operation. The power consumptions for idling, 

relaying/transmitting data, and receiving data are 0.76 W, 0.78 

W, and 0.92 W, respectively. The times needed for 

relaying/transmitting data and receiving data are 23.75 s and 

0.65 s, respectively. 

TABLE I.  POWER DRAWN AND TIME FOR EACH OPERATION 

Operation Power ∆Time 

Idle 0.76W - 

Relay or Transmit Patient Data 0.78W 23.75s 

Receive GPS 0.92W 0.65s 

 

According to the above results, the prototype power 

consumption was reasonable and these measurements can be 

used for optimizing the routing algorithm in the future. 

B. Field Test Results 

The results from the field simulation test were summarized 

in Table 2. The transmission was successful and time for each 

hop was averaged at 20.14 seconds. 

TABLE II.  TIMES OF TRANSMISSIONS 

Hop# 1 2 3 4 5 Average 

Cumulative 

time (s) 

20.09 40.24 60.38 80.53 100.68 

Time for 
each hop (s) 

20.09 20.15 20.15 20.15 20.15 20.14 

 

The field test not only shows that the routing algorithm 

could be viably implemented, but also shows the modularity of 

the software, as the data structures were modified without 

needing to modify any other parameters. 
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C. Network Test Results 

Figure 8 shows the results of probability of transmission or 

packet delivery ratio (%) vs. transmission range of User Nodes 

(km) for high, medium, and low density network situations.  

 

 
Figure 8. Packet Delivery Ratio (%) vs. Transmission Range of User Nodes 

(km) for high, medium and low density network conditions. 
 

It was found that the routing implementation could work 

for all demographics, though is much less effective at lower 

densities, such as 0.2 users/km
2
. To find the radio transmission 

ranges needed for the network, the highest value for 

transmission range whose packet delivery ratio was below 

99% was found and was 3.13 km, 4.70 km, and 7.15 km for 

densities of 10 users/km
2
, 1 user/km

2
 and 0.2 users/km

2
, 

respectively. In practice, software used by the hospital staff at 

the time of User Node registration may be able to determine 

whether extra auxiliary nodes nearby the User Nodes should 

be implemented to ensure that the node is connected with the 

remainder of the network. 

It was determined that the model is accurate. Additionally, 

it is dimensionally valid. 

IV. CONCLUSION 

Given testing data, it was found that the prototype design of 

the DME tracking system was feasible to implement and 

would meet the requirement for securely transmitting patient 

data, location information, and the status of DME to a nearby 

hospital during power outages. Although the maximum radio 

range for the current pilot prototype was found to be 90 m, the 

advantage of modular design allows this proof-of-concept 

system to be easily scalable by simply employing more 

powerful radio modules or having specially placed forwarding 

nodes to facilitate the forwarding of information from more 

distant homes. In a medium patient density situation, for 

instance, a radio with an indirect (i.e. non line-of-sight) range 

of >4.70 km could be employed. Additionally, the 

implementation of this DME tracking system is relatively 

inexpensive, utilizing commercially available low cost 

general-purpose microcontrollers and general-purpose radios. 

When produced in one circuit in mass production, the cost will 

be even lowered.  

This novel DME tracking system provides a critical link 

between the DME-dependent patients and the hospital during 

natural disasters. Further research and optimization of this 

system is underway.  
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