

Properties of Rational Exponents

Let a and b be real numbers and let m and n be rational numbers, such that the quantities in each property are real numbers.

Property Name	Definition	Example
Product of Powers	$a^m * a^n = a^{m+n}$	$5^{1/2} \cdot 5^{3/2} = 5^{(1/2+3/2)} = 5^2 = 25$
Power of a Power	$(a^m)^n = a^{mn}$	$(3^{5/2})^2 = 3^{(5/2 \cdot 2)} = 3^5 = 243$
Power of a Product	$(ab)^m = a^m b^m$	$(16 \cdot 9)^{1/2} = 16^{1/2} \cdot 9^{1/2} = 4 \cdot 3 = 12$
Negative Exponent	$a^{-m} = \frac{1}{a^m}, a \neq 0$	$36^{-1/2} = \frac{1}{36^{1/2}} = \frac{1}{6}$
Zero Exponent	$a^0 = 1, a \neq 0$	$213^0 = 1$
Quotient of Powers	$\frac{a^m}{a^n} = a^{m-n}, a \neq 0$	$\frac{4^{5/2}}{4^{1/2}} = 4^{(5/2 - 1/2)} = 4^2 = 16$
Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, b \neq 0$	$\left(\frac{27}{64} \right)^{1/3} = \frac{27^{1/3}}{64^{1/3}} = \frac{3}{4}$

Rational Exponents

Let $a^{1/m}$ be an nth root of a, and let m be a positive integer.

$$a^{min} = (a^{1/n})^m = (\sqrt[n]{a})^m$$

$$a^{-min} = \frac{1}{a^{min}} = \frac{1}{(a^{1/n})^m} = \frac{1}{(\sqrt[n]{a})^m}, a \neq 0$$

C) Core Concept

Properties of Radicals

Let a and b be real numbers and let n be an integer greater than 1.

Property Name	Definition	Example
Product Property	$\sqrt[q]{a \cdot b} = \sqrt[q]{a} \cdot \sqrt[q]{b}$	$\sqrt[3]{4 \cdot \sqrt[3]{2}} = \sqrt[3]{8} = 2$
Quotient Property	$\sqrt[a]{\frac{\overline{a}}{b}} = \frac{\sqrt[b]{a}}{\sqrt[a]{b}}, b \neq 0$	$\frac{\sqrt[4]{162}}{\sqrt[4]{2}} = \sqrt[4]{\frac{162}{2}} = \sqrt[4]{81} = 3$

The properties of rational exponents and radicals can also be applied to expressions involving variables. Because a variable can be positive, negative, or zero, sometimes absolute value is needed when simplifying a variable expression.

	Rule	Example
When n is odd	$\sqrt[n]{\chi^n} = \chi$	$\sqrt[7]{5^7} = 5 \text{ and } \sqrt[7]{(-5)^7} = -5$
When n is even	$\sqrt[n]{x^n} = x $	$\sqrt[4]{3^4} = 3 \text{ and } \sqrt[4]{(-3)^4} = 3$

Absolute value is not needed when all variables are assumed to be positive.

•		•
9		
	:	
	1 4	
	1	
	\$	
	1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
	•	
	· •	
	i 1	
	; !	
	# # # # # # # # # # # # # # # # # # #	
	1	
	1	
	6 i i	
	: 	
	; 	
		•
	9 ·	
	•	

Write the expression using a radical sign and no negative exponents.

1.
$$x^{\frac{2}{3}}$$

2.
$$3y^{\frac{2}{5}}$$

3.
$$(3y)^{\frac{2}{5}}$$

Write the expression using positive rational exponents.

$$4. \sqrt{x^5}$$

5.
$$(\sqrt[6]{2a})^5$$

6.
$$\sqrt{64x^3}$$

Simplify the expression.

7.
$$\left(\frac{9}{25}\right)^{\frac{1}{2}}$$

8.
$$\left(\frac{9}{25}\right)^{-\frac{1}{2}}$$

9.
$$\left(16^{-\frac{3}{5}}\right)^{\frac{5}{4}}$$

10.
$$\left(81^{\frac{1}{2}}-9^{\frac{1}{2}}\right)^2$$

11.
$$(8a^{-6})^{-\frac{2}{3}}$$

12.
$$(4x^{-3})^{-\frac{1}{2}} \cdot 4x^{\frac{1}{2}}$$

13.
$$a^{\frac{1}{2}} \left(a^{\frac{3}{2}} - 2a^{\frac{1}{2}} \right)$$

$$14. \ x^{-\frac{1}{2}} \left(x^{\frac{5}{2}} - 2x^{\frac{3}{2}} \right)$$

Simplify:

D 142 x 6 y ?

2) 3/27 X Y 60

3) \$\\\ \32 \tag{628}

6) 3J-32×5Y8

5.1

Practice A

In Exercises 1-3, find the indicated real nth root(s) of a.

1.
$$n = 3, a = 125$$

2.
$$n = 2, a = 49$$

3.
$$n = 4, a = 81$$

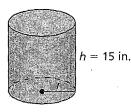
In Exercises 4-9, evaluate the expression without using a calculator.

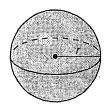
5.
$$16^{1/4}$$

8.
$$(-1000)^{2/3}$$

In Exercises 10–15, evaluate the expression using a calculator. Round your answer to two decimal places when appropriate.

10.
$$\sqrt[5]{16,807}$$


11.
$$\sqrt[6]{15,625}$$


12.
$$12^{-1/3}$$

In Exercises 16 and 17, find the radius of the figure with the given volume.

16.
$$V = 1726 \text{ in.}^3$$

17.
$$V = 734 \text{ m}^3$$

In Exercises 18–23, find the real solution(s) of the equation. Round your answer to two decimal places when appropriate.

18.
$$x^4 = 256$$

19.
$$3x^3 = 375$$

20.
$$(x-6)^2 = 40$$

21.
$$(x+7)^3 = 1000$$

22.
$$x^5 = -112$$

23.
$$9x^4 = 54$$

24. When the average price of an item increases from p_1 to p_2 over a period of n years, the price p_2 is given by $p_2 = p_1(r+1)^n$, where r is the annual rate of inflation (in decimal form). Find the annual rate of inflation when the price of a loaf of bread was \$1.19 in 1970 and \$3.29 in 2010.

Practice 3

In Exercises 1–3, find the in saled real nth root(s) of a.

1.
$$n = 3, a = 343$$

2.
$$n = 6, a = -64$$

3.
$$n = 5, a = -243$$

In Exercises 4–9, evaluate t expression without using a calculator.

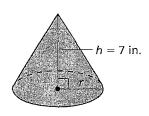
6.
$$(-32)^{2/5}$$

7.
$$(-125)^{5/3}$$

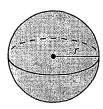
$$9 27^{-4/3}$$

answer to two decimal plac-

In Exercises 10-15, evaluate the expression using a calculator. Round your when appropriate.


11.
$$150^{2/5}$$

14
$$(\sqrt[5]{223})^3$$


15.
$$(\sqrt[7]{-34})^5$$

In Exercises 16 and 17, find the radius of the figure with the given volume.

16.
$$V = 425 \text{ in.}^3$$

17.
$$V = 1458 \text{ m}^3$$

to two decimal places wher ppropriate.

In Exercises 18–23, find the pal solution(s) of the equation. Round your answer

18.
$$6x^4 = 60$$

19.
$$x^5 = -233$$

20.
$$x^4 + 19 = 100$$

21.
$$x^3 + 17 = 57$$

22.
$$\frac{1}{5}x^4 = 125$$

23.
$$\frac{1}{7}x^3 = -49$$

24. Kepler's third law state—that the relationship between the mean distance d (in astronomical units) | a planet from the Sun and the time t (in years) it takes the planet to orbi he Sun can be given by $d^3 = t^2$.

a. It takes Venus 0.61 year to orbit the Sun. Find the mean distance of Venus from the Su in astronomical units).

b. The mean distance | Jupiter from the Sun is 5.24 astronomical units. How many years d s it take Jupiter to orbit the Sun?

i.

5.2

Practice A

In Exercises 1–6, use the properties of rational exponents to simplify the expression.

1.
$$(7^2)^{1/4}$$

2.
$$(14^3)^{1/2}$$

3.
$$\frac{5^{1/5}}{5}$$

4.
$$\frac{10}{10^{1/4}}$$

5.
$$\left(\frac{6^5}{9^5}\right)^{-1/5}$$

6.
$$\left(7^{-3/4} \bullet 7^{1/4}\right)^{-1}$$

In Exercises 7–12, use the properties of radicals to simplify the expression.

7.
$$\sqrt{3} \cdot \sqrt{75}$$

8.
$$\sqrt[3]{81} \cdot \sqrt[3]{9}$$

9.
$$\sqrt[4]{12} \cdot \sqrt[4]{8}$$

10.
$$\sqrt[4]{9} \cdot \sqrt[4]{9}$$

11.
$$\frac{\sqrt[5]{128}}{\sqrt[5]{4}}$$

12.
$$\frac{\sqrt{5}}{\sqrt{80}}$$

In Exercises 13-18, write the expression in simplest form.

13.
$$\sqrt[4]{208}$$

14.
$$\frac{\sqrt[3]{9}}{\sqrt[3]{4}}$$

15.
$$\sqrt{\frac{5}{27}}$$

16.
$$\frac{1}{2+\sqrt{3}}$$

17.
$$\frac{6}{4-\sqrt{5}}$$

18.
$$\frac{8}{\sqrt{2} + \sqrt{5}}$$

In Exercises 19–24, simplify the expression.

19.
$$8\sqrt[4]{2} + 5\sqrt[4]{2}$$

20.
$$7\sqrt[5]{13} - 17\sqrt[5]{13}$$

21.
$$4(9^{1/4}) + 7(9^{1/4})$$

22.
$$4\sqrt{18} - 15\sqrt{2}$$

23.
$$8\sqrt{7} + 12\sqrt{63}$$

24.
$$\sqrt[4]{405} + 2\sqrt[4]{5}$$

- 25. The volume of a cube is 80 cubic centimeters.
 - **a.** Use exponents to solve the formula for the volume V of a cube with side length s, $V = s^3$, for s.
 - **b.** Substitute the expression for s from part (a) into the formula for the surface area of a cube, $S = 6s^2$.
 - **c.** Substitute the volume of the given cube into the formula found in part (b) to find the surface area, S. Simplify, if possible.

Practice B

In Exercises 1-6, use the properties of intional exponents to simplify the expression.

1.
$$\frac{2^{2/5}}{2}$$

2.
$$\left(\frac{1}{1}\right)^{-1/6}$$

3.
$$\left(11^{3/2} \cdot 11^{-5/2}\right)^{-1/3}$$

4.
$$(9^{-3/5} \bullet 9^{1/5})^{-1}$$

5.
$$\frac{3^3}{9^{3/4}}$$

6.
$$\frac{25^{5/9} \cdot 25^{7/9}}{5^{4/3}}$$

In Exercises 7–12, use the properties cardicals to simplify the expression.

7.
$$\sqrt[3]{25} \cdot \sqrt[3]{625}$$

9.
$$\frac{\sqrt[4]{176}}{\sqrt[4]{11}}$$

10.
$$\frac{\sqrt{7}}{\sqrt{700}}$$

11.
$$\frac{3}{2} = \frac{\sqrt[3]{50}}{\sqrt[3]{2}}$$

12.
$$\frac{\sqrt[4]{4} \cdot \sqrt[4]{12}}{\sqrt[8]{3} \cdot \sqrt[8]{3}}$$

In Exercises 13–18, write the expression in simplest form.

13.
$$\frac{\sqrt[3]{4}}{\sqrt[3]{9}}$$

14.
$$\sqrt[3]{\frac{1}{5}}$$

15.
$$\sqrt[4]{\frac{2401}{4}}$$

16.
$$\frac{7}{5-\sqrt{3}}$$

17.
$$-\frac{\epsilon}{\sqrt{7}}$$

18.
$$\frac{\sqrt{2}}{\sqrt{15}-\sqrt{3}}$$

In Exercises 19–24, simplify the expre ⊸ion.

19.
$$10(25^{2/3}) - 6(25^{2/3})$$
 20. $2\sqrt{54} - 11\sqrt{6}$ **21.** $13\sqrt[3]{3} - \sqrt[3]{375}$

20. 2
$$|\overline{54}| - |11\sqrt{6}|$$

21.
$$13\sqrt[3]{3} - \sqrt[3]{375}$$

22.
$$\sqrt[5]{486} + 10\sqrt[5]{2}$$

23. 4
$$8^{1/4}$$
) - 3($3^{1/4}$)

24.
$$(7^{1/3}) + 4(189^{1/3})$$

25. The volume of a right circular cyli | ler is $V = 9\pi r^2$, where r is the radius.

- **a.** Use radicals to solve $V = 9\pi r$ for r. Simplify, if possible.
- area of a right cylinder, $S = 1 + \pi r^2$.
- **b.** Substitute the expression for r on part (a) into the formula for the surface
- the volume is 108 cubic meter
- c. Use the answer to part (b) to find the surface area of a right cylinder when

Practice A

In Exercises 1-6, graph the function. Identify the domain and range of the function.

1.
$$g(x) = \sqrt{x} + 4$$

2.
$$h(x) = \sqrt{x} - 2$$
 3. $f(x) = -\sqrt[3]{4x}$

3.
$$f(x) = -\sqrt[3]{4x}$$

4.
$$h(x) = \sqrt[3]{-2x}$$

5.
$$f(x) = \frac{1}{3}\sqrt{x-2}$$

5.
$$f(x) = \frac{1}{3}\sqrt{x-2}$$
 6. $g(x) = \frac{1}{4}\sqrt{x+5}$

In Exercises 7–12, describe the transformation of f represented by g. Then graph

7.
$$f(x) = \sqrt{x}$$
; $g(x) = \sqrt{x-1} + 4$ 8. $f(x) = \sqrt{x}$; $g(x) = 3\sqrt{x+2}$

8.
$$f(x) = \sqrt{x}$$
; $g(x) = 3\sqrt{x+2}$

9.
$$f(x) = \sqrt[3]{x}$$
; $g(x) = -2\sqrt[3]{x}$

10.
$$f(x) = \sqrt[3]{x}$$
; $g(x) = \sqrt[3]{x-1} + 3$

11.
$$f(x) = x^{1/2}$$
; $g(x) = 3(-x)^{1/2}$

12.
$$f(x) = x^{1/3}$$
; $g(x) = -\frac{1}{3}x^{1/3}$

In Exercises 13-15, use a graphing calculator to graph the function. Then identify the domain and range of the function.

13.
$$f(x) = \sqrt{x^2 - x}$$

14.
$$g(x) = \sqrt[3]{x^2 - x}$$

13.
$$f(x) = \sqrt{x^2 - x}$$
 14. $g(x) = \sqrt[3]{x^2 - x}$ **15.** $h(x) = \sqrt[3]{2x^2 + 3x}$

In Exercises 16 and 17, write a rule for g described by the transformations of the graph of f.

- 16. Let g be a vertical shrink by a factor of $\frac{1}{3}$, followed by a translation 3 units right of the graph of $f(x) = \sqrt{x+5}$.
- 17. Let g be a reflection in the x-axis, followed by a translation 2 units down of the graph of $f(x) = 5\sqrt{x} + 3$.

In Exercises 18 and 19, use a graphing calculator to graph the equation of the parabola. Identify the vertex and the direction that the parabola opens.

18.
$$\frac{1}{2}y^2 = x$$

19.
$$-3y^2 = x + 6$$

In Exercises 20 and 21, use a graphing calculator to graph the equation of the circle. Identify the radius and the intercepts.

20.
$$x^2 + y^2 = 16$$

21.
$$25 - y^2 = x^2$$

5.3 Practice 3

In Exercises 1–6, graph the notion, identify the domain and range of the function.

1.
$$g(x) = -\sqrt{x} + 2$$

2.
$$f(x) = \sqrt[3]{-4x}$$

1.
$$g(x) = -\sqrt{x} + 2$$
 2. $f(x) = \sqrt[3]{-4x}$ **3.** $f(x) = \frac{1}{4}\sqrt{x+5}$

4.
$$h(x) = (5x)^{1/2} - 2$$
 5. $g(x) = -2(x-3)^{1/3}$ **6.** $h(x) = -\sqrt[5]{x}$

$$5. \quad g(x) = -2(x-3)^{1/2}$$

6.
$$h(x) = -\sqrt[5]{x}$$

In Exercises 7–12, describe le transformation of f represented by g. Then graph each function.

7.
$$f(x) = \sqrt{x}; g(x) = \sqrt{x-2}$$

8.
$$f(x) = \sqrt[3]{x}$$
; $g(x) = \sqrt[3]{x-5} - 1$

9.
$$f(x) = x^{1/4}$$
; $g(x) = \frac{1}{5} - x^{1/4}$

9.
$$f(x) = x^{1/4}$$
; $g(x) = \frac{1}{2} (-x)^{1/4}$ **10.** $f(x) = x^{1/3}$; $g(x) = \frac{1}{2}x^{1/3} - 3$

11.
$$f(x) = \sqrt[4]{x}$$
; $g(x) = \sqrt{x-1} + 3$ 12. $f(x) = \sqrt[5]{x}$; $g(x) = \sqrt[5]{-243x} - 2$

12.
$$f(x) = \sqrt[5]{x}$$
; $g(x) = \sqrt[5]{-243x} - 2$

the domain and range of the function.

In Exercises 13–15, use a g phing calculator to graph the function. Then identify

13.
$$g(x) = \sqrt[3]{2x^2 - 3x}$$

13.
$$g(x) = \sqrt[3]{2x^2 - 3x}$$
 14. $f(x) = \sqrt{\frac{1}{3}x^2 - x + 2}$ **15.** $h(x) = \sqrt[3]{3x^2 - 6x + 2}$

15.
$$h(x) = \sqrt[3]{3x^2 - 6x + 2}$$

graph of f.

In Exercises 16 and 17, wri a rule for g described by the transformations of the

- **16.** Let g be a horizontal s tch by a factor of 2, followed by a translation 2 units up of the graph of $f(x) = \sqrt{3x}$.
- 17. Let g be a translation init up and 4 units left, followed by a reflection in the y-axis of the graph of $|x| = \sqrt{-x} - \frac{1}{2}$.

In Exercises 18 and 19, us ા graphing calculator to graph the equation of the parabola. Identify the verte and the direction that the parabola opens.

18.
$$3y^2 + 5 = x$$

19.
$$x - 3 = -\frac{1}{2}y^2$$

In Exercises 20 and 21, us in graphing calculator to graph the equation of the circle. Identify the radius and the intercepts.

20.
$$x^2 + y^2 = 81$$

21.
$$-y^2 = x^2 - 49$$

Practice A

In Exercises 1-6, solve the equation. Check your solution.

1.
$$\sqrt{3x-2} = 5$$

2.
$$\sqrt{6x+1} = 9$$

2.
$$\sqrt{6x+1} = 9$$
 3. $\sqrt[3]{x+10} = 4$

4.
$$\sqrt[3]{x} - 8 = -2$$

5.
$$-3\sqrt{16x} + 14 = -10$$
 6. $6\sqrt[3]{25x} - 16 = 14$

6.
$$6\sqrt[3]{25x} - 16 = 14$$

7. Biologists have discovered that the shoulder height h (in centimeters) of a male Asian elephant can be modeled by $h = 62.5\sqrt[3]{t} + 75.8$, where t is the age (in years) of the elephant. Determine the age of an elephant with a shoulder height of 300 centimeters.

In Exercises 8–13, solve the equation. Check your solution(s).

8.
$$x - 8 = \sqrt{4x}$$

9.
$$\sqrt{2x-14} = x-7$$

10.
$$\sqrt{x+22} = x+2$$

11.
$$\sqrt[3]{8x^3 + 27} = 2x + 3$$

12.
$$\sqrt[4]{2-9x^2} = 3x$$

13.
$$\sqrt{3x-5} = \sqrt{x+9}$$

In Exercises 14–16, solve the equation. Check your solution(s).

14.
$$2x^{2/3} = 18$$

15.
$$x^{3/4} + 10 = 0$$

15.
$$x^{3/4} + 10 = 0$$
 16. $(x + 12)^{1/2} = x$

17. Describe and correct the error in solving the equation.

$$\sqrt[3]{2x+1} = 8$$

$$2x+1 = 2$$

$$2x = 1$$

$$x = \frac{1}{2}$$

In Exercises 18-20, solve the inequality.

18.
$$3\sqrt{x} - 4 \ge 5$$
 19. $\sqrt{x - 3} \le 7$

19.
$$\sqrt{x-3} \le 3$$

20.
$$5\sqrt{x-1} > 10$$

- **21.** The length ℓ (in inches) of a standard nail can be modeled by $\ell = 54d^{3/2}$, where d is the diameter (in inches) of the nail.
 - a. What is the diameter of a standard nail that is 2 inches long?
 - b. What is the diameter of a standard nail that is 4 inches long?
 - c. The nail in part (b) is twice as long as the nail in part (a). Is the diameter twice as long? Explain.

Practice B

In Exercises 1–6, solve the equation. Chask your solution.

1.
$$\sqrt[3]{x-14} = -2$$

1.
$$\sqrt[3]{x-14} = -2$$
 2. -5 $16x + 17 = -8$ **3.** $\frac{1}{4}\sqrt[3]{2x} + 8 = 6$

3.
$$\frac{1}{4}\sqrt[3]{2x} + 8 = 6$$

4.
$$\sqrt{3x} - \frac{3}{4} = 0$$

5.
$$3 \stackrel{5}{\sim} + 9 = 15$$

6.
$$\sqrt[4]{8x} - 16 = -12$$

In Exercises 7–12, solve the equation. C ack your solution(s).

7.
$$\sqrt{10x + 24} = x + 12$$

8.
$$x + 3 = \sqrt{\frac{22}{3}x + 9}$$

9.
$$\sqrt[4]{2-25x^2} = 5x$$

10.
$$\sqrt{4x-4}-\sqrt{x+8}=0$$

11.
$$\sqrt[3]{4x-1} = \sqrt[3]{6x+5}$$

12.
$$\sqrt{4x-10} = \sqrt{2x-13} + 1$$

In Exercises 13–15, solve the equation. heck your solution(s).

13.
$$3x^{2/3} - 30 = 18$$

14.
$$(6. + 3)^{1/2} - 3x = 0$$
 15. $(2x^2 + 8)^{1/4} = x$

15.
$$(2x^2 + 8)^{1/4} = x$$

In Exercises 16-18, solve the inequality

16.
$$4\sqrt{x} + 3 \le 23$$

17.
$$\sqrt{+10} \ge 6$$

18.
$$-3\sqrt{x+2} < 15$$

- height of the kite sailor's jump.
- 19. "Hang time" is the time you are sus anded in the air during a jump. Your hang time t in seconds is given by the furtion $t = 0.5\sqrt{h}$, where h is the height (in feet) of the jump. A kite sailor h a hang time of 2.5 seconds, Find the

In Exercises 20–23, solve the nonlinea system. Justify your answer with a graph.

20.
$$y^2 = x + 2$$

$$y = x + 2$$

21.
$$y^2 = -x + 7$$

22.
$$x^2 + y^2 = 9$$

23.
$$x^2 + y^2 = 16$$

$$y = x - 3$$

$$y = x + 4$$

- to brake?
- **24.** The speed s (in miles per hour) of: $\frac{1}{2}$ ar can be given by $s = \sqrt{30 fd}$, where f is the coefficient of friction and d is t = stopping distance (in feet). The coefficient of friction for a snowy road is 0.30 You are driving 20 miles per hour and approaching an intersection. How a way from the intersection must you begin

5.5 Practice A

In Exercises 1 and 2, find (f + g)(x) and (f - g)(x) and state the domain of each. Then evaluate f + g and f - g for the given value of x.

1.
$$f(x) = -3\sqrt[4]{x}$$
; $g(x) = 15\sqrt[4]{x}$; $x = 81$

2.
$$f(x) = 9x + 2x^2$$
; $g(x) = x^2 - 3x + 7$; $x = 1$

In Exercises 3–5, find (fg)(x) and $(\frac{f}{g})(x)$ and state the domain of each.

Then evaluate fg and $\frac{f}{g}$ for the given value of x.

3.
$$f(x) = x^2$$
; $g(x) = 2\sqrt{x}$; $x = 9$

4.
$$f(x) = 10x^3$$
; $g(x) = 4x^{5/3}$; $x = 8$

5.
$$f(x) = 4x^{2/3}$$
; $g(x) = 2x^{1/3}$; $x = -27$

In Exercises 6 and 7, use a graphing calculator to evaluate (f + g)(x), (f - g)(x), (fg)(x), and (fg)(x) when x = 5. Round your answers to two decimal places.

6.
$$f(x) = 5x^3$$
; $g(x) = 20x^{1/4}$

7.
$$f(x) = 4x^{2/3}$$
; $g(x) = 16x^{4/3}$

8. Describe and correct the error in stating the domain.

$$f(x) = 4x^{1/2} + 2$$
 and $g(x) = -4x^{1/2}$

The domain of (f + g)(x) is all real numbers.

9. The growth of mold in Specimen A can be modeled by $A(t) = \frac{5}{6}t^{2/3}$. The growth of mold in Specimen B can be modeled by $B(t) = \frac{1}{3}t^{2/3}$.

a. Find
$$(A - B)(t)$$
.

b. Explain what the function (A - B)(t) represents.

5.5 Practice B

In Exercises 1 and 2, find (f - g)(x) and (f - g)(x) and state the domain of each. Then evaluate f + g for the given value of f.

1.
$$f(x) = \sqrt[3]{4x}$$
; $g(x) = 9\sqrt[3]{4x}$; $x = -2$

2.
$$f(x) = 3x - 5x^2 - x$$
 $g(x) = 6x^2 - 4x$; $x = -1$

In Exercises 3–5, find (fg)(x) and (fg)(x) and state the domain of each.

Then evaluate fg and $\frac{f}{g}$ for the given value of x.

3.
$$f(x) = 3x^3$$
; $g(x) = \sqrt{2}$; $x = -8$

4.
$$f(x) = 3x^2$$
; $g(x) = \frac{1}{2} x^4$; $x = 16$

5.
$$f(x) = 10x^{5/6}$$
; $g(x) = 2x^{3/3}$; $x = 64$

In Exercises 6 and 7, use a raphing calculator to evaluate (f + g)(x), (f - g)(x),

(fg)(x), and $(\frac{f}{g})(x)$ when = 5. Round your answers to two decimal places.

6.
$$f(x) = -3x^{1/3}$$
; $g(x) = 4x^{1/2}$

7.
$$f(x) = 6x^{3/4}$$
; $g(x) = 3x^{1/2}$

8. Describe and correct t error in stating the domain.

$$f(x) = 4x^{7/3} \text{ and } g(x) = 2x^{2/3}$$
The domain c $\frac{f}{\mathcal{E}}(x)$ is all real numbers.

9. The table shows the one is of the two functions f and g. Use the table to evaluate (f+g)(5), (f-g), (fg)(3), and (fg)(2).

x	0	1	2	3	4	5
f(x)	18	13	8	3	+2	-7
g(x)	64	32	16	8	4	2

Practice A

In Exercises 1–3, solve y = f(x) for x. Then find the input(s) when the output is -3.

1.
$$f(x) = 2x + 3$$

2.
$$f(x) = \frac{1}{3}x - 2$$
 3. $f(x) = 8x^3$

$$3. \quad f(x) = 8x$$

In Exercises 4-6, find the inverse of the function. Then graph the function and its inverse.

$$4. \quad f(x) = 4x$$

5.
$$f(x) = 4x - 1$$

5.
$$f(x) = 4x - 1$$
 6. $f(x) = \frac{1}{2}x - 5$

- 7. Find the inverse of the function $f(x) = \frac{1}{5}x 2$ by switching the roles of x and y and solving for y. Then find the inverse of the function f by using inverse operations in the reverse order. Which method do you prefer? Explain.
- 8. Determine whether each pair of functions f and g are inverses. Explain your reasoning.

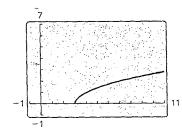
X	-2	-1	0	1	2
f(x)	-3	3	9	15	21

X		-3	3	0	15	21
g	(x)	-2	-1	0	1	2 .

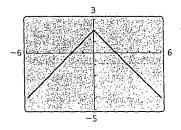
'	x	1	2	3	4	5
	f(x)	9	7	5	3	1

1	x	9	7	5	. 3	1
	g(x)	ĺ	2	3	4	5.

In Exercises 9-11, find the inverse of the function. Then graph the function and its inverse.


9.
$$f(x) = 9x^2, x \ge 0$$

9.
$$f(x) = 9x^2, x \ge 0$$
 10. $f(x) = 16x^2, x \le 0$ **11.** $f(x) = (x+2)^3$


11.
$$f(x) = (x+2)^3$$

In Exercises 12 and 13, use the graph to determine whether the inverse of f is a function. Explain your reasoning.

12.

13.

Practice B

In Exercises 1-3, solve y = f(x) for x. Len find the input(s) when the output is -3.

1.
$$f(x) = -\frac{4}{3}x + 2$$
 2. $f(x) = 25x^4$

2.
$$f(=25x^4)$$

3.
$$f(x) = (x-3)^2 - 4$$

In Exercises 4–6, find the inverse of the unction. Then graph the function and its inverse.

4.
$$f(x) = -3x + 4$$

4.
$$f(x) = -3x + 4$$
 5. $f(x) = -\frac{1}{3}x + 1$ **6.** $f(x) = \frac{2}{5}x - \frac{1}{5}$

6.
$$f(x) = \frac{2}{5}x - \frac{1}{5}$$

7. Describe and correct the error in fir and the inverse function.

$$f(x) = 3x - 8$$

$$y = 3x - 8$$

$$x = 3y - 8$$

$$g(x) = 3x - 8$$

In Exercises 8-10, find the inverse fun ion. Then graph the function and its inverse.

8.
$$f(x) = -9x^2, x \le 0$$
 9. $f(x) = (x-1)^3$ 10. $f(x) = x^6, x \le 0$

9.
$$f(x-1)^3$$

10.
$$f(x) = x^6, x \le 0$$

the reverse order. Which method degree prefer? Explain.

11. Find the inverse of the function $f(x) = 8x^3$ by switching the roles of x and y and solving for y. Then find the inverse f the function f by using inverse operations in

In Exercises 12-15, determine whethe the functions are inverses.

12.
$$f(x) = 6x + 1; g(x) = 6x - 1$$

12
$$f(x) = 6x + 1; g(x) = 6x - 1$$
 13 $f(x) = \frac{\sqrt[3]{x - 6}}{2}; g(x) = 8x^3 + 6$

14.
$$f(x) = \frac{5-x}{2}$$
; $g(x) = 5-2x$

14.
$$f(x) = \frac{5-x}{2}$$
; $g(x) = 5-2x$ **15.** $f(x) = 4x^2 + 3$; $g(x) = -\frac{x-3}{4}$

16. The volume of a sphere is given by $V = \frac{14}{3}\pi r^3$, where r is the radius.

a. Find the inverse function. Des se what it represents.

b. Find the radius of a sphere wit a volume of 146 cubic meters.

Common Core Algebra 2

Algebra of Functions

Given the following functions:

X	f(x)
1	4
2	1
3	5
4	2
5	3

Evaluate:

(f+g)(1)

3g(1)-f(4)

(h·g)(-2)

$$\left(\frac{h}{f}\right)(2)$$

h(g(0))

g(h(0))

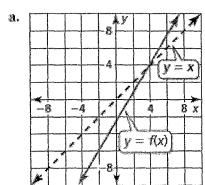
 $h(x) = \sqrt[3]{4x}$

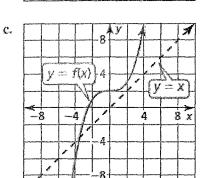
.

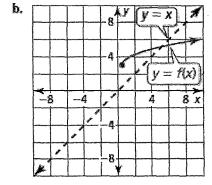
	()	
	THE PROPERTY OF THE PROPERTY O	
	,	
	1 1 1	
	'	

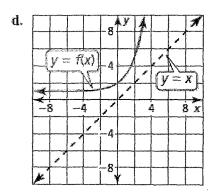
Inverse of a Function

EXPLORATION 1 Graphing Functions and Their Inverses


Work with a partner. Each pair of functions are inverses of each other. Use a graphing calculator to graph f and g in the same viewing window. What do you notice about the graphs?


$$f(x) = 4x + 3$$
$$g(x) = \frac{x - 3}{4}$$


$$f(x) = \sqrt{x-3}$$
$$g(x) = x^2 + 3, x \ge 0$$


EXPLORATION 2 Sketching Graphs of Inverse Functions

Work with a partner. Use the graph of f to sketch the graph of g, the inverse function of f, on the same set of coordinate axes. Explain your reasoning.

Let f(x) = 2x + 3.

- a. Solve y = f(x) for x.
- **b.** Find the input when the output is 7.

Finding the werse of a Linear Function

Find the inverse of f(x) = 3x - 1.

Finding the verse of a Quadratic Function

Find the inverse of $f(x) = x^2, x \ge 0.$ Then graph the function and its inverse.

Horizontal Line Test

The inverse of a function f is also a function if and only if no horizontal line intersects the graph of f more than once.

Inverse is a function

Inverse is not a function

EXAMPLE 4

Finding the Inverse of a Cubic Function

Consider the function $f(x) = 2x^3 + 1$. Determine whether the inverse of f is a function. Then find the inverse.

EXAMPLE 5

Finding the Inverse of a Radical Function

Consider the function $f(x) = 2\sqrt{x-3}$. Determine whether the inverse of f is a function. Then find the inverse.

Verify that f(x) = 3x - 1 and $g(x) = \frac{x+1}{3}$ are inverse functions.

Solving Real-Life Prollems

In many real-life problems, formul a contain meaningful variables, such as the radius r in the formula for the surface area of a sphere, $S = 4\pi r^2$. In this situation, switching the variables to find the inverse wo discreate confusion by switching the meanings of Sand r. So, when finding the inverse volve for r without switching the variables.

Solving a | |u|ti-Step Problem

Find the inverse of the function that epresents the surface area of a sphere, $S=4\pi r^2$. Then find the radius of a sphere the has a surface area of 100π square feet.