Station #

We are trying tominimize/maximize Surface aren (Circle min or max & fill in the blank)

Main equation (this is the equation we are trying to optimize):

Auxiliary equation (this comes from other information given in the problem):

Use the auxiliary equation to write your main equation with only/ two variables:

$$-h = \frac{200}{12}$$

A suitable viewing window to see the min or max:

Answer to the original question:
$$h = \frac{200}{5.84^2} = 5.86$$

Graph (label axes and sketch a graph):

Station #_A

We are trying to minimize/maximize anea

(Circle min or max & fill in the blank) Main equation (this is the equation we are trying to optimize):

Auxiliary equation (this comes from other information given in the problem):

Use the auxiliary equation to write your main equation with only two variables:

$$A = \chi(100 - 3x)$$

A= 100x-3x2

Graph (label axes and sketch a graph):

A suitable viewing window to see the min or max:

$$[xmin, xmax] = (0,36)$$

$$[ymin, ymax] = [0, 1000]$$

Answer to the original question:

Max area: 833.33 ft²

Dimensius: 1x=16.67

Station	#	_3

(Circle mil or max & fill in the blank)

Main equation (this is the equation we entrying to optimize):

Use the auxiliary equation to write you main equation with only, two variables:

$$V = \chi^2 h$$

$$V = \chi^2 \left(\frac{70 - \chi^2}{4\chi}\right) = \frac{70\chi - \chi}{4}$$

A suitable viewing window to see the nation max:

 $[xmin, xmax] = [O_1(0)]$ [ymin, ymax] = [0,80]

Answer to the original question Mail Volume (56.36 ft3)

Dimensions: $\chi = 4.83$ $h = \frac{70 - 4.83^2}{4/4.83^2} = 2.42$

We are try g to minimize/maximize

Auxiliary equation (this comes from other information given in the problem):

Volume

Graph (label axes and sketch a graph):

Station #

Main ϵ quation (this is the equation we e trying to optimize):

We are trug to minimize/maximize volume (Circle mi or max & fill in the blank)

Auxiliary equation (this comes from other information given in the problem):

Use the auxiliary equation to write you main equation with only two variables:

Graph (label axes and sketch a graph):

A suitable viewing window to see the 1 nor max:

[xmin xmax] = [o₁ 6] [ymin, ymax] = [o₁ 6]

Answer to the original question:

Max Volume: (44 in 3)

I should cut 2 inches from each corner.

