Name	Date
CC Algebra 2	Period

EXPLORING THE FOCUS AND DIRECTRIX

Teacher Demonstration: http://www.youtube.com/watch?v=wtk5q8wGAe0

- 1. What is the name of the shape that is formed by all the folds in this activity?
- 2. Fill in the blank: The vertex is ______ between the _____.
- 3. The directrix is ______ to a parabolas axis of symmetry.

A <u>parabola</u> is the set of points in a place that are equidistant from a given point and a given line in a plane. The given point is called the <u>focus</u>, and the line is called the <u>directrix</u>.

The midpoint on the perpendicular segment from the focus to the directrix is call the <u>vertex of</u> the <u>parabola</u>. The line that passes through the vertex and focus is called the <u>axis of symmetry</u>.

We can derive the equation of a parabola that opens up or down with vertex (0,0), focus (0,p), and directrix y=-p usin the distance formula.

Practice: Use the distance formu to write an equation of the parabola with a focus at (0,-4) and directrix of y = 4.

Steps for writing the e unition of a parabola given the focus and directrix.

Step 1: Graph the directrix and 1 cus.

Step 2: Find the distance in between the directrix and focus, this number is 2p.

Step 3: Plug in values for (h, k): the vertex of the parabola

Step 4: Solve for y (for parabola opening up/down) or x (for parabolas opening left/right)

G Core Concept

Standard Equations of a Parabola with Vertex at the Origin Vertical axis of symmetry (x = 0)

Equation: $y = \frac{1}{4p}x^2$

Focus:

>

(0, p)

Directrix: y = -p

Horizontal axis of symmetry (y = 0)

Equation: $x = \frac{1}{4n}y^2$

Focus:

(p, 0)

Directrix: x = -p

Example 1: Write the equation of the parabola given the $\{0,4\}$ and directrix y=-4.

Example 2: Write the equation of the parabola given the vertex (0, -2) and directrix x = 2.

Example 3: Identify the focus, dire $\exists r : x$, and axis of symmetry of $-4x = y^2$. Graph the parabola.

Example 4: Write the equation of he parabola shown.

Example 5: Write the equation o the parabola shown.

Core Concep

Standard Equation of a Parabola with Vertex at (h, k)Vertical axis of symn |ry(x = h)|

Focus: (h, k+p)

Directrix: y = k - p

Horizontal axis of sy |ne try|(y = k)

Directrix: x = h - p

Solving Real-Life Problems

Parabolic reflectors have cross sections that are parabolas. Incoming sound, light, or other energy that arrives at a parabolic reflector parallel to the axis of symmetry is directed to the focus

(Diagram 1). Similarly, energy that is emitted from the focus of a parabolic reflector and then strikes the reflector is directed parallel to the axis of symmetry (Diagram 2).

Example 6:

An electricity-generating dish uses a parabolic reflector to concentrate sunlight onto a high-frequency engine located at the focus of the reflector. The sunlight heats helium to 650°C to power the engine. Write an equation that represents the cross section of the dish shown with its vertex at (0, 0). What is the depth of the dish?

Check this out:

http://www.mathwarehouse.com/quadratic/parabola/focus-and-directrix-of-parabola.php

i	
:	
:	
•	
]	

vame Keu	
CC Algebra 2	

Date_____SMID as parabolas"
Period____

EXPLORING THE FOCUS AND DIRECTRIX

Teacher Demonstration: http://www.youtube.com/watch?v=wtk5q8wGAe0

1. What is the name of the shape that is formed by all the folds in this activity?

Parabola

2. Fill in the blank: The vertex is a light of the blank between the focus

and the Circle Ctrix

3. The directrix is <u>perpendicular</u> to a parabolas axis of symmetry.

A <u>parabola</u> is the set of points in a place that are equidistant from a given point and a given line in a plane. The given point is called the <u>focus</u>, and the line is called the <u>directrix</u>.

The midpoint on the perpendicular segment from the focus to the directrix is call the <u>vertex of the parabola</u>. The line that passes through the vertex and focus is called the <u>axis of symmetry</u>.

We can derive the equation of a parabola that opens up or down with vertex (0,0), tocal (0,p), and directrix y = -p using the distance formula.

and directrix of y = 4.

F(0, p) $D(x_i)$

Practice: Use the distance formue to write an equation of the parabola with a focus at (0,-4)

Steps for writing the e unition of a parabola given the focus and directrix.

Step 1: Graph the directrix and focus.

Step 2: Find the distance in bety +en the directrix and focus, this number is our p.

Step 3: Plug in values for (h, k): he vertex of the parabola

Step 4: Solve for y (for parabola opening up/down) or x (for parabolas opening left/right)

💪 Core Concept

Standard Equations of a Parabola with Vertex at the Origin

Vertical axis of symmetry (x = 0)

Focus:

1

Directrix:
$$y = -p$$

Horizontal axis of symmetry (y = 0)

Equation:
$$x = \frac{1}{4p}y^2$$

Focus:

Directrix:
$$x = -p$$

Example 1: Write the equation of the parabola given the vertex (0,4) and directrix y = x

Example 2: Write the equation of the parabola given the vertex (0, -2) and directrix x = 2.

vertex: (0,0) Directrix X=1 $A \times 5$: Y = 0Example 4: Write the equation of he parabola shown. directrix vertex Example 5: Write the equation o the parabola shown. 62) F.(10,2) vertéx fòcus 12 16 x Dill(Hix G Core Concep Standard Equation of a Parabola with Vertex at (h, k)Vertical axis of symn |ry|(x = h)Equation: $y = \frac{1}{4p}(x - 1)^2 + k$ Focus: (h, k+p)Directrix: y = k - pp > 0p < 0Horizontal axis of sy netry(y = k)Equation: $x = \frac{1}{4p}(y - z)^2 + h$ Directrix: x = h - p

Solving Real-Life Problems

Parabolic reflectors have cross sections that are parabolas. Incoming sound, light, or other energy that arrives at a parabolic reflector parallel to the axis of symmetry is directed to the focus

(Diagram 1). Similarly, energy that is emitted from the focus of a parabolic reflector and then strikes the reflector is directed parallel to the axis of symmetry (Diagram 2).

Example 6:

An electricity-generating dish uses a parabolic reflector to concentrate sunlight onto a high-frequency engine located at the focus of the reflector. The sunlight heats helium to 650°C to power the engine. Write an equation that represents the cross section of the dish shown with its vertex at (0, 0). What is the depth of the dish?

$$y = \frac{1}{410} x^{2}$$

$$p = 4.5$$

$$y = \frac{1}{4(4.5)} x^{2}$$

$$y = \frac{1}{18} x^{2}$$

Check this out:

http://www.mathwarehouse.com/quadratic/parabola/focus-and-directrix-of-parabola.php

11 4(-5) (4-2) (+3) J= -2(142) 3 $X = \frac{1}{4(-3)}(y-1)^{2} + 4$ $1 \times = \frac{1}{-12} (y-1)^2 + 4$ axis: y=1