| Name <sub>.</sub> | Key                              | Date                                       | Class Period                            |
|-------------------|----------------------------------|--------------------------------------------|-----------------------------------------|
| Poin              | t of Co                          | ncurrency Workshee                         | t                                       |
| Give t            | he name th                       | e point of concurrency for each            | ch of the following.                    |
| 1. An             | gle Bisector                     | s of a Triangle in Cen                     | HEE                                     |
| 2. <b>Me</b>      | dians of a T                     | riangle COTO                               | 9                                       |
| 3. Alt            | itudes of a                      | Triangle OCHOCE                            | nter 1                                  |
| 4. Per            | pendicular                       | Bisectors of a Triangle CCC                | meenter                                 |
| -                 |                                  | f the following statements.                | he Sides of the                         |
|                   | e <i>incenter</i> c<br>ngle.     | f a triangle is equidistant from t         | he Sides of the                         |
|                   | e <b>circumce</b><br>e triangle. | <b>iter</b> of a triangle is equidistant f | rom the Vertices of                     |
|                   | e centroid is<br>the opposite    |                                            | rom each vertex to the midpoint         |
| 8. To             | inscribe a c                     | circle about a triangle, you use the       | ne incenter 20                          |
| 9. To             | circumscri                       | be a circle about a triangle, you          | use the Circumcenter                    |
| 10. <b>C</b>      | omplete th                       | e following chart. Write if the            | point of concurrency is <i>inside</i> , |

10. Complete the following chart. Write if the point of concurrency is <u>inside</u>, <u>outside</u>, or <u>on the triangle</u>.

|              | Acute Δ | Obtuse $\Delta$ | Right $\Delta$ |
|--------------|---------|-----------------|----------------|
| Circumcenter | inside  | Outside         | 00             |
| Incenter     | ioside  | inside          | inside         |
| Centroid     | incido  | inside          | incide         |
| Orthocenter  | inside  | 03-50           | oo.            |

4 +1

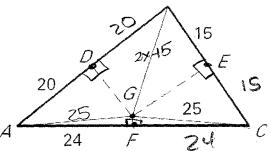
In the diagram, the perpendicular bisectors (shown with dashed segments) of  $\triangle ABC$  meet at point G--the <u>circumcenter</u>. and are shown dashed. Find the indicated measure.

12. BD = 
$$20$$

13. 
$$CF = 24$$
 14.  $AB = 40$ 

15. 
$$CE = 16$$
.  $AC = 48$ 

16. 
$$AC = 48$$



17. m∠ADG = \_\_\_\_\_\_\_\_

18. IF BG = 
$$(2x - 15)$$
, find x.

$$2x-15=25$$
 $2x=40$ 
 $x=20$ 

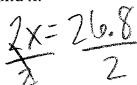
$$x = \underline{20}$$

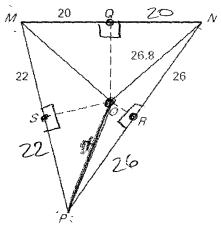
In the diagram, the perpendicular bisectors (shown with dashed segments) of  $\triangle MNP$  meet at point O—the circumcenter. Find the indicated measure.

20. 
$$PR = 26$$

23. 
$$m \angle MQO = QO$$

24. If 
$$OP = 2x$$
, find x.





Point T is the *incenter* of  $\Delta PQR$ .

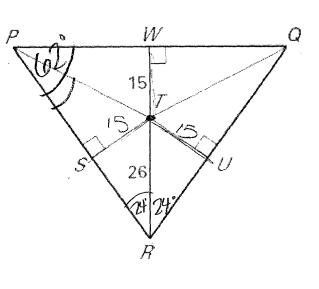
(equi from sides)

25. If Point T is the *incenter*, then Point T is the point of concurrency of



27. If 
$$TU = (2x - 1)$$
, find x.

$$2x - 1 = 15$$
 $2x = 16$ 



X =

28. If 
$$m\angle PRT = 24^\circ$$
, then  $m\angle QRT = 24^\circ$ 

29. If 
$$m\angle RPQ = 62^{\circ}$$
, then  $m\angle RPT = 31$ 

Point G is the <u>centroid</u> of  $\triangle$  ABC, AD = 8, AG = 10, BE = 10, AC = 16 and CD = 18. Find the length of each segment.

(30) If Point G is the *centroid*, then Point & G is the point of concurrency of

the Medians.

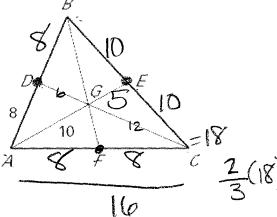
32. EA = 
$$\sqrt{5}$$

33. 
$$CG = 12$$

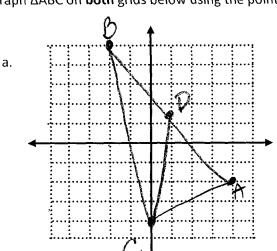
35. 
$$GE = 5$$

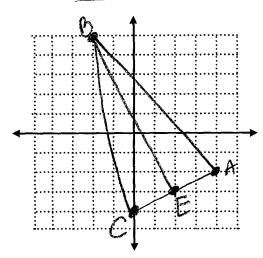
37. BC = 
$$\frac{20}{}$$

38. 
$$AF =$$



 $\mathfrak{A}$ . Graph  $\triangle$ ABC on **both** grids below using the points A(4, -2), B(-2, 5), and C(0, -4).





40. Using the graph in 39a, find the midpoint of AB. (Hint: Midpoint Formula is on your chapter 1 theorems.) Label this point D on graph 39a. Connect point D to C. What special segment is CD?

midpoint of  $\overline{AB} = (1, \frac{3}{2})$ 

CD is a Modian

41. Using the graph in 37b, find the midpoint of CA. Label this point E on graph 39b. Connect point E to point B. Now, find the slope of  $\overline{BE}$  and  $\overline{AC}$ . What kinds of lines are  $\overline{BE}$  and  $\overline{AC}$ ? Name the three special segments that  $\overline{BE}$ could be.

d be.  $5+73 = \frac{1}{12}$  midpoint of  $\overline{CA} = (2, 3)^{\frac{1}{2}}$  slope of  $\overline{BE} = 2$  slope of  $\overline{AC} = 2$  M(AC)= 4

 $\overline{\textit{BE}}$  and  $\overline{\textit{AC}}$  are \_

BE could be an altitude

d(AB)= \( \( \frac{14+7}{2} \) = \( (-2-5)^2 \)

Find the orthocenter of  $\triangle ABC$ .

**42.** 
$$A(2,0), B(2,4), C(5,0)$$

