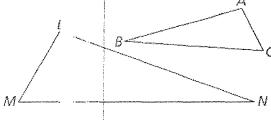

1	1	1
Ì	/	1
•		/

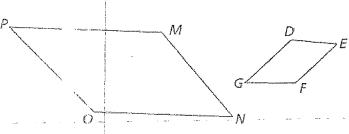
ame:			Date:
		,	

Similarity

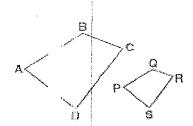
ABCD ~ A'B'C'D'


What makes polygons similar?

1.

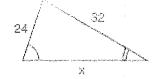

2.

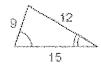
List algebras of congruent angles. Then write the ratios of the corresponding side lengths in a statement of proportionality.


1. $\triangle LNM \sim \triangle ABC$

2. DEFG ~ MNOP

2.

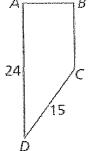

If quadrilateral ABCD – quadrilate ||PQRS|, |AD = 7|, |AB = 5x - 1|, |PS = 4|, and |PQ = 2x + 2|, then find the value o

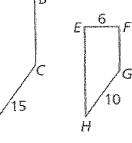

4. If $\triangle RST \sim \triangle ABC$, $m\angle A = \bar{x}^2 - 8\bar{x}$, $m\angle C = 4x - 5$, and $m\angle R = 5x + 30$, find $m\angle C$.

5. A triangle has sides whose lengths are 5, 12, and 13. A similar triangle could have sides with lengths of

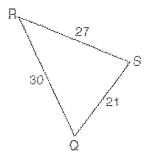
- 1) 3, 4, and 5
- 2) 6, 8, and 10
- 3) 7, 24, and 25
- 4) 10, 24, and 26

6. The accompanying diagram shows two silliar triangles.



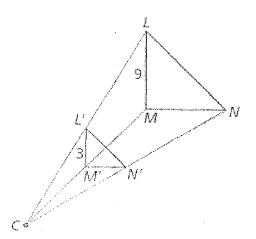

Find >.

7.


In the diagram, ABCD ~ EFGF Find the following.

- 4. scale factor
- 5. *EH*
- **6.** *AB*

. . In the accompanying diagram, $\triangle QRS$ is similar to $\triangle LMN$, RQ=30, QS=21, SR=27, and LN=7. What is the leftgth of MLP

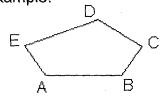

9.

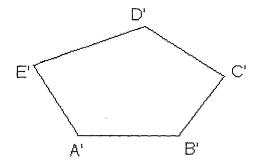
The sides of a triangle are 3, 4, and 5. Find the length of the shortest side of a similar triangle whose longest side has length 20.

Prosivirgh. Peinsylvania and Sta. College. Pennsylvania are 9.8 inches apart on a map that has a scale showin 1.1 inches equal to 15 miles. How far apart are the cities in real life?

The sides of a periagon are 5, 8, 9, 11, az = 17. What is the length of the longest side of a similar pentagon whose shortest side is 10

12. Find the scale factor of the dilation


Geometry

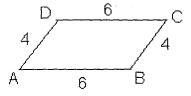

Similar Polygons

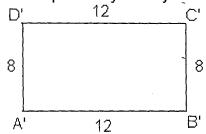
Date

Definition:

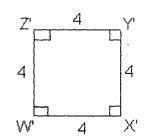
Example:

In general, two polygons are similar if:


1)

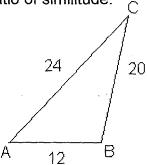

2)

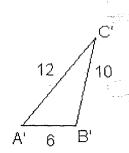
Example: State if the following figures are similar. Explain why or why not.


B'

a)

b) 4 A' 6

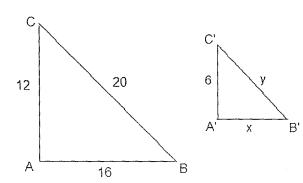

The number represented by the ______ is called the _____


Since triangles are also polygon, the definition given for two similar polygons will also apply to two similar triangles.

Definition:

Example 1:

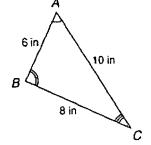
In the figure, $\triangle ABC \sim \triangle A'B'C'$ Find the ratio of similitude.

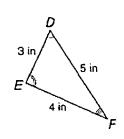


Example 2:

 $\triangle ABC \sim \triangle A'B'C'$ and A'C' co esponds to AC.

(a) Find the ratio of simility le of the larger triangle to the setaller.

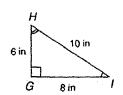


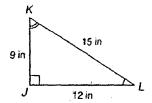

(b) Find x and y.

We have seen that, if two triangle			
segments related to triangles.	We are going	to examine th	e lengths of sp
Draw a diagram for each:			
Theorem: If two triangles are sin	nilar, the length	s of correspond	ling altitudes h
same ratio as the lengths of any	two correspond	ding sides.	
Theorem:			
Theorem			
<u>Theorem</u> :			

Perimeter, Area, and Volume

a) Find the ratio of similar triangles:

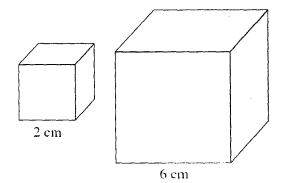



b) Find the perimeters of \triangle BC and $\triangle DEF$.

Is there a relationship between arts (a) and (b)?

Theorem:

c) Find the ratio of similitu \oplus for the following triangles:



d) Find the areas of each langle.

Is there a relationship betwee parts (c) and (d)?

Theorem:

- e) Find the ratio of similit the for the following cubes.
- f) Find the volumes of e :h cube.

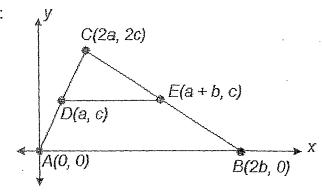
Is there a relationship betwe a parts (e) and (f)?

Theorem:

Nai		
N'A	me	
	• • • • • • • • • • • • • • • • • • • •	

Date____

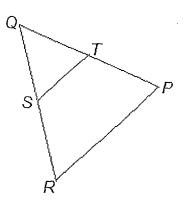
Geometry

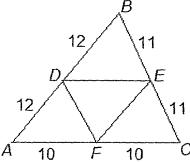

Midsegment Theorem

Using coordinate geometry prove the following:

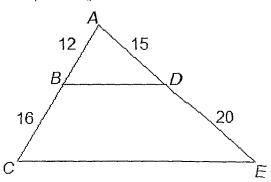
Given: $\triangle ABC$, D is the midpoint of \overline{AC} , and

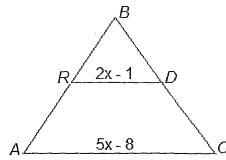
E is the midpoint of \overline{BC} .


Prove: $\overline{DE} \parallel \overline{AB}$ and $DE = \frac{1}{2}AB$


Geometry

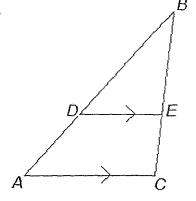
Proportions Involving Line Segments Practice


1) In $\triangle PQR$, S is the midpoint of \overline{RQ} and T is the midpoint of \overline{PQ} . RP = 7x + 5, ST = 4x - 2, SR = 2x + 1, and PQ = 9x + 1. Find ST, RP, SR, RQ, PQ, and TQ.

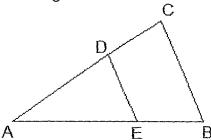

2) In $\triangle ABC$, points D, E, and F are the midpoints of the sides with the measures shown. Find the measure of the perimeter of $\triangle DEF$.

3) In $\triangle AEC$, if AB = 12, BC = 16, AD = 15, and DE = 20, is $\overline{BD} \parallel \overline{CE}$?

4) In $\triangle ABC$, R is the midpoil of \overline{AB} , and D is the midpoint of \overline{BC} . If AC = 5x - 8, RD = 2x -, DC = 3x + 2, and AB = 10x - 1, find the lengths of AB, AC, DC, and RD.


5) In $\triangle ABC$, if $\overline{DE} \parallel \overline{AC}$, which of the following are true?

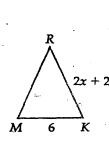
(a)
$$\frac{BD}{BA} = \frac{BE}{BC}$$

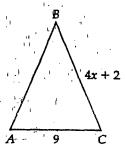

$$(c)\frac{BA}{DA} = \frac{BC}{EC}$$

(b)
$$\frac{BD}{DA} = \frac{BE}{EC}$$

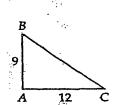
$$(d)\frac{BD}{BA} = \frac{DE}{AC}$$

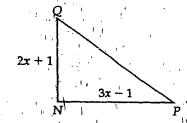
For 6 and 7, use $\triangle ABC$ with D a point on \overline{AC} and E a point on \overline{AB} such that $\overline{DE} \parallel \overline{BC}$. In each instance, write an algebraic equation to find the indicated lengths.

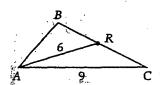


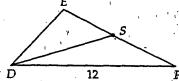

6) If AD = 1, DC = x, AE = x and EB = x + 2, find DC.

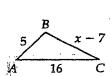
7) If ED = x, DA = 6, CB = 6, and CD = x - 1, find ED.

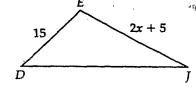

Name_ Geometry Pd.

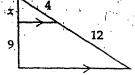

Date Proportions/Similar Triangles

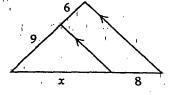


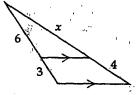

 $\triangle ABC \sim \triangle NQP$. Find NQ and NP.



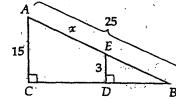

14 The two figures below are similar. Find the length of DS.

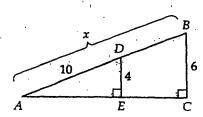

 $\triangle ABC \sim \triangle DEJ$. Find these lengths: DJ, BC,

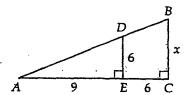




16 In each diagram, the line segment within the triangle is parallel to the third side. Find x in each case:





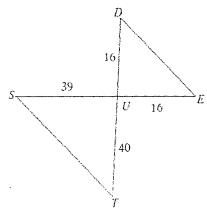


d

f.

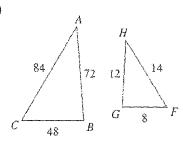
•	

Name:	
wante.	

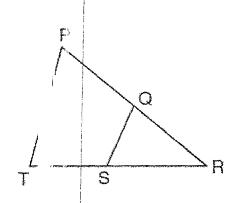

Date:

Triangle Similarity Shortcuts

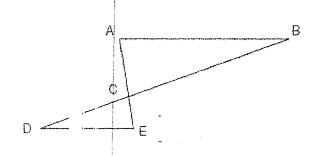
Angle-Angle (AA) Similarity	If two angles of one triangle are congruent to two angles of another triangle, then the triangles are similar.	B $78^{\circ}C$ 57° A F $78^{\circ}C$ $ABC \sim \triangle DEF$
Side-Side-Side (SSS) Similarity	If the three sides of one triangle are proportional to the three corresponding sides of another triangle. then the triangles are similar.	$ \begin{array}{c cccc} B & 12 & C \\ \hline 15 & 10 & 12 & 18 \\ A & F & 14.4 & E \end{array} $ $ \triangle ABC \sim \triangle DEF $
Side-Angle-Side (SAS) Similarity	If two sides of one triangle are proportional to two sides of another triangle and their included angles are congruent, then the triangles are similar.	$ \begin{array}{c cccc} B & C & D \\ \hline 15 & 57 & 10 & 12 \\ A & F & E \end{array} $ $ \Delta ABC \sim \Delta DEF $


State if the triangles in each pair are similar. If so, state how you know they are similar and complete the similarity statement.

1)

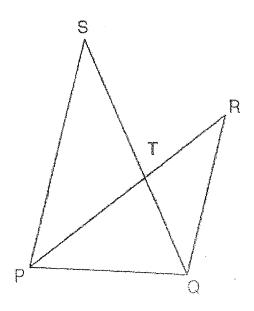

ΔUTS ~ _____

2)


ΔCBA ~ _____

3. In the diagram below of $\triangle PRT$, Q is a point on \overline{PR} , S is a point on \overline{TR} , \overline{QS} is drawn, and $\angle RPT \cong \angle RSQ$.

Which reason justifies the conclusion tha $\Delta PRT \sim \Delta SRQ$?

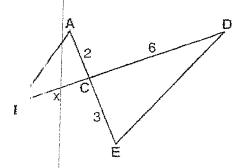

- 1) AA
- 2) ASA
- 3) SAS
- 4) SSS
- 4. In the diagram of $\triangle ABC$ and $\triangle EDC$ below \overline{AE} and \overline{BD} intersect at C, and $\angle CAB \cong \angle CED$.

Which method can be used to show the ΔABC must be similar to ΔEDC ?

- 1) SAS
- 2) A.A
- 3) SSS
- 4) HL

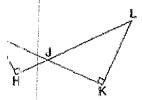
. In the diagram below, \overline{SQ} and \overline{PR} intersect at T, \overline{PQ} is drawn, and $\overline{PS}\|\overline{QR}$.

What technique can be used to prove that $\Delta PST \sim \Delta RQT$?


- 1) SAS
- 2) SSS
- 3) ASA
- 4) AA
- 6. In triangles ABC and DEF, AB=4, AC=5, DE=8, DF=10, and $\angle A\cong \angle D$. Which method could be used to prove $\triangle ABC \sim \triangle DEF$?
 - 1) AA
 - 2) SAS
 - 3) SSS
 - 4) ASA

7. In $\triangle ABC$ and $\triangle DEF$, $\frac{AC}{DF} = \frac{CB}{FE}$. Which add ional information would prove $\triangle ABC \sim \triangle DEF$?

- 1) AC =: DF
- 2) CB =: FE
- 3) $\angle ACB \cong \angle DFE$
- 4) $\angle BAC \cong \angle EDF$


8.

In the accompanying diagram, \overline{A} \overline{DE} , \overline{BCD} , and \overline{AB} \parallel \overline{DE} . If AC = 2, CD = 6, and CE = 3, what is the length of \overline{BC}

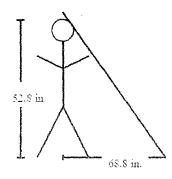
9.

In the accompanying diagram, $\Delta IH \sim \Delta LKJ$.

If 1H = 5, HJ = 2, and LK = 7, fin. |KJ|.

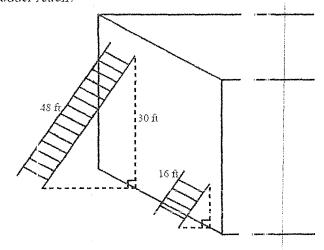
Complete the following when $\Delta IJK \sim \Delta LMN$.

a)
$$m \angle K = m \angle$$

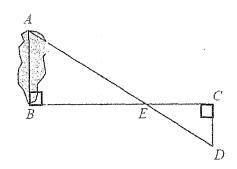

b)
$$\frac{KI}{JI} = \frac{NL}{?}$$

11.

In $\triangle QRS$, QR=7, RS=13, and $m \angle R=46$. In $\triangle UVT$, VT=14, TU=28, and $m \angle T=46$. State whether the triangles are similar, and if so, write a similarity statement.


12.

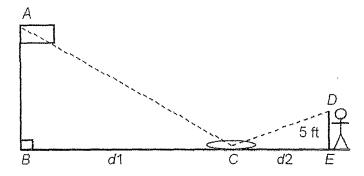
At the same time of day, a man who is 52.8 inches tall casts a 68.8-inch shadow and his son easts a 43-inch shadow. What is the height of the man's son?


Two ladders are leaning against a wall at a same angle as shown. How far up the wall does the shorter ladder reach?

- [A] 8 ft
- [B] 10 ft
- [C] 6 ft
- [D] 20 ft

14.

To find the distance across the lake in the lighter below, which of the following proportions can you use?

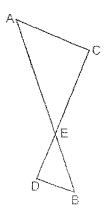

[A]
$$\frac{BE}{CE} = \frac{AB}{CD}$$

[B]
$$\frac{BE}{EC} = \frac{Cl}{A}$$

[C]
$$\frac{AB}{BE} = \frac{CD}{DE}$$
 [D] $\frac{AB}{AE} = \frac{DE}{CD}$

[D]
$$\frac{AB}{AE} = \frac{DE}{CD}$$

Karen wanted to measure the height of her school's flag pole. She placed a mirror on the ground d1 feet from the flag pole, then walked backwards until she was able to see the top of the pole in the mirror. Her eyes were 5 ft above the ground and she was d2 ft from the mirror. Using similar triangles, find the height of the flagpole if d1 = 42 ft and d2 = 8 ft. Round your answer to the nearest hundredth.



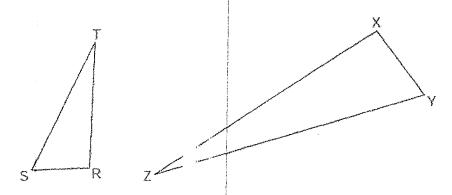
16.

In $\triangle QRS$, QR=7, RS=13, and $m\angle R=46$. In $\triangle UVT$, VT=14, TU=28, and $m\angle T=46$. State whether the triangles are similar, and if so, write a similarity statement.

17.

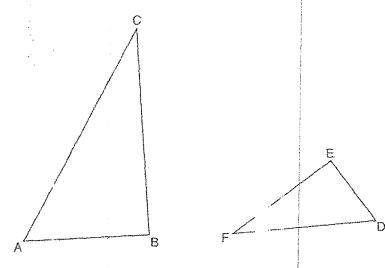
As shown in the diagram below, \overline{AB} and \overline{CD} intersect at E, and $\overline{AC} \parallel \overline{BD}$.

Given $\triangle AEC \sim \triangle BED$, which equation is true?


$$\langle 1 \rangle \ \frac{CE}{DE} = \frac{EB}{EA}$$

(3)
$$\frac{EC}{AE} = \frac{BE}{ED}$$

$$\langle 2 \rangle \ \frac{AE}{BE} = \frac{AC}{BD}$$


$$(4) \quad \frac{ED}{EC} = \frac{AC}{BD}$$

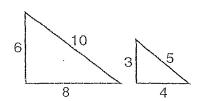
Triangles RST and XYZ are drawn below If R\$ = 6, ST = 14, XY = 9, YZ = 21, and $\angle S \cong \angle Y$, is $\triangle RST$ similar to $\triangle XYZP$ Justify your uswer.

19.

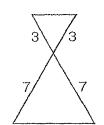
Triangles ABC and DEF are drawn below.

If AB = 9, BC = 15, DE = 6, EF = 1, and $\angle B \cong \angle E$, which statement is true?

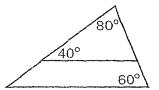
- $(1) \quad \angle.CAB \cong \angle.DEF$
- $\langle 3 \rangle \triangle AB \sim \triangle DEF$
- $(2) \ \frac{AB}{CB} = \frac{FE}{DE}$
- $\langle 4 | \frac{AB}{DE} = -\frac{E}{B}$

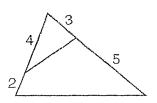

ometry Pd.

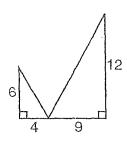
Triangle Similarity

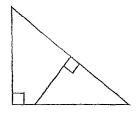

Questions 1 through 7 refer to the following:

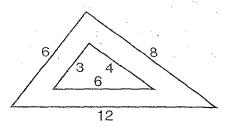
Determine whether the two triangles are similar and, if they are similar, state a reason.

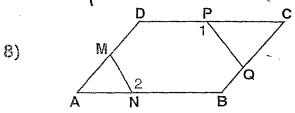



2)

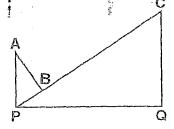

3)


4)


5)


6)

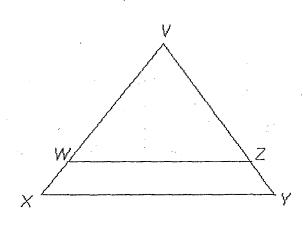
7)


Write proofs on separate paper.

Given: ABCD is a parallelogram $\angle 1 \cong \angle 2$

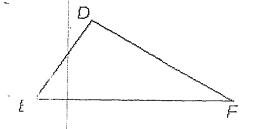
Prove:
$$\frac{MN}{PQ} = \frac{AN}{PC}$$

9)


Given:
$$\frac{\overline{AP} \perp \overline{PQ}}{\overline{CQ} \perp \overline{PQ}}$$
 $\frac{\overline{AB} \perp \overline{PC}}{\overline{AB} \perp \overline{PC}}$

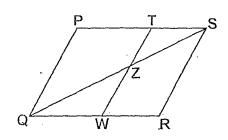
Prove: AP · QC = PB · PC

10)


Given:
$$\frac{VW}{VX} = \frac{VZ}{VY}$$

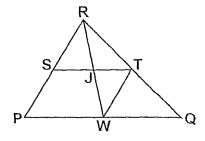
Prove: WZ | XY

Given:
$$\frac{DE}{GH} = \frac{DF}{GI} = \frac{EF}{HI}$$

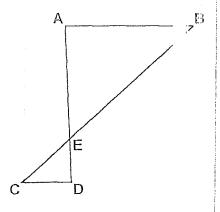

Prove: $\angle E \cong \angle H$

Similar Triangle Proofs

1)

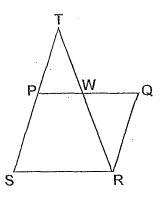

zometry Pd. _

Given: PS/IQR, with diagonal QS.
QS and TW intersect at Z.


Prove: ΔTSZ ~ ΔQWZ

2)

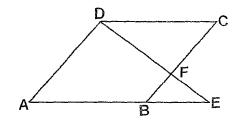
Given: RP 11 TW


Prove: $RS \cdot TJ = TW \cdot SJ$

Given: AB II CD

Prove: $\frac{AE}{ED} = \frac{BE}{CE}$

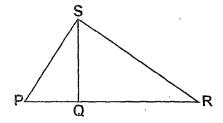
4)


Given: 75//QR with SPT and TWR

Prove:
$$\frac{PT}{PW} = \frac{QR}{QW}$$

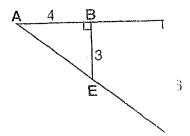
Name: _____ Date ____

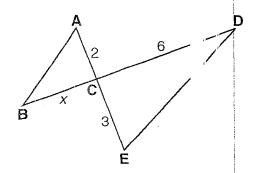
eometry Pd.


1)

Given: DOLLABE, ABE, DFE, BFC

Prove: DFC - DEFB


2)

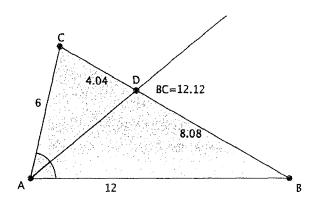

Given: Right $\triangle PSR$ with altitude \overline{SQ} drawn to hypotenuse \overline{PR}

Prove.
$$\frac{PR}{PS} = \frac{PS}{PQ}$$

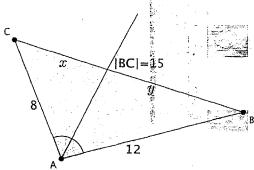
b) $PR.PQ = PS.PS$

3) In the accompanying figure, $\overline{AE} \perp \overline{3E}$, $\overline{AC} \perp \overline{CD}$, $\overline{AB} = 4$, $\overline{BE} = 3$, and C = 6. Find the length of \overline{AC} .

4) In the accompanying diagram, \overline{CE} , \overline{BCD} , and \overline{AB} $\parallel DE$. If $\overline{AC} = 2$, $\overline{CD} = 5$, and $\overline{CE} = 3$, what is the length of \overline{E} .

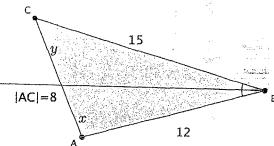

5) In triangle ABC, D is a point on \overline{AB} and \overline{E} is a point on \overline{AC} such that $\overline{DE} \parallel \overline{BC}$. If AD = 2, DB = x - 1, AE = x, and $\overline{EC} = x + 2$ find AE.

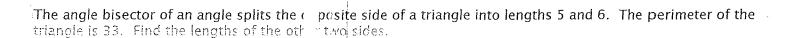
Timilarity and the Angle Disector Theorem


ussion

the diagram below, the angle bisector of in meets side at point. Does the angle bisector create any observable lationships with respect to the side lengths of the triangle?

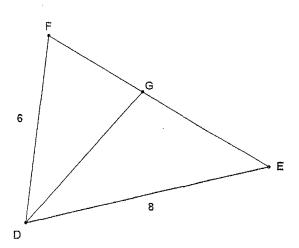
ractice:


The sides of a triangle are 8,12, and 15. An angle bisector meets the side of length 15. Find the lengths x and y. Explain how you arrived at your answers.



The sides of a triangle are 8,12, and 15. An angle bisector meets the side of length 12. Find the lengths x and y.

15 8 y |AB|=12


The sides of a triangle are 8,12, and 15. An angle bisector meets the side of length 8. Find the lengths x and y.

The sides of a triangle are 10.5, 16.5, an Θ . An angle bisector meets the side of length 9. Find the lengths of the segments of the side of 9.

In the diagram of triangle DEF below, DC \oplus an angle bisector, ED = 8, DF = 6, and 8 1/6 . Find FG and EG.

